Skip to main content
Log in

Resilience of monolayer MoS2 memtransistor under heavy ion irradiation

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Due to its unique gate-tunable non-volatility, the memtransistor is a promising component for low-energy neuromorphic computing. The grain boundary- and point defect-enabled resistive switching in MoS2 memtransistors suggests an inherent ionizing radiation tolerance. However, the memtransistor resilience under heavy ion irradiation has not yet been investigated. In this work, polycrystalline, monolayer MoS2 films, and memtransistors are irradiated with 48 keV Au. Fluence-dependent effects on the MoS2 lattice structure, chemical states, and memtransistor performance metrics are elucidated. When the Au fluence remains below 1013 cm−2, the memtransistor functionalities are preserved. When the Au fluence exceeds 1014 cm−2, the MoS2 is amorphized and memtransistor functionalities are lost. According to Raman spectroscopy and transmission electron microscopy, the MoS2 defect concentration increases with increasing Au fluence. X-ray photoelectron spectroscopy substantiates a significant S:Mo ratio reduction with increasing Au fluence. This work suggests that MoS2 memtransistors possess sufficient heavy ion resilience for few-year space missions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Availability of data and material

Additional data not included herein are available upon reasonable request.

References

  1. T. Vogl, K. Sripathy, A. Sharma, P. Reddy, J. Sullivan, J.R. Machacek, L. Zhang, F. Karouta, B.C. Buchler, M.W. Doherty, Y. Lu, P.K. Lam, Nat. Commun. 10, 1202 (2019). https://doi.org/10.1038/s41467-019-09219-5

    Article  CAS  Google Scholar 

  2. F. K. Reed, N. D. B. Ezell, M. N. Ericson, C. L. Britton, Jr., Radiation-Hardened Electronics for Reactor Environments. ORNL/TM-2020/1776, (2020), https://info.ornl.gov/sites/publications/Files/Pub147829.pdf

  3. D. E. Holcomb, C. L. Britton, Jr. V. K. Varma, L. G. Worrall, Remote Operations and Maintenance Framework for Molten Salt Reactors. ORNL/TM-2018/1107 (2018), https://info.ornl.gov/sites/publications/Files/Pub121489.pdf

  4. R.C. Walker II., T. Shi, E.C. Silva, I. Jovanovic, J.A. Robinson, Physica Status Solidi A 213(12), 3065–3077 (2016). https://doi.org/10.1002/pssa.201600395

    Article  CAS  Google Scholar 

  5. H. Hong, Y. Zhang, J.W. Engle, T.R. Nayak, C.P. Theuer, R.J. Nickles, T.E. Barnhart, W. Cai, Biomaterials 33(16), 4147–4156 (2012). https://doi.org/10.1016/j.biomaterials.2012.02.031

    Article  CAS  Google Scholar 

  6. S. J. Palethorpe, B. Bowen, J. J. Hastings, P. E. Mort, G. Askew, Technical Challenges, Needs and Opportunities in Decommissioning of the Sellafield Site. (2013)

  7. M. Foxe, G. Lopez, I. Childres, R. Jalilian, C. Roecker, J. Boguski, I. Jovanovic, Y.P. Chen, IEEE Nucl. Sci. Symp. Conf. Rec. (2009). https://doi.org/10.1109/NSSMIC.2009.5401864

    Article  Google Scholar 

  8. P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng, J.-H. Park, M.-H. Chiu, A.-Y. Lu, H.-L. Tang, M.M. Tavakoli, G. Pitner, X. Ji, Z. Cai, N. Mao, J. Wang, V. Tung, J. Li, J. Bokor, A. Zettl, C.-I. Wu, T. Palacios, L.-J. Li, J. Kong, Nature 593, 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9

    Article  CAS  Google Scholar 

  9. Q. Hua, G. Gao, C. Jiang, J. Yu, J. Sun, T. Zhang, B. Gao, W. Cheng, R. Liang, H. Qian, W. Hu, Q. Sun, Z.L. Wang, H. Wu, Nat. Commun. 11, 6207 (2020). https://doi.org/10.1038/s41467-020-20051-0

    Article  CAS  Google Scholar 

  10. H.M. Hill, A.F. Rigosi, C. Roquelet, A. Chernikov, T.C. Berkelbach, D.R. Reichman, M.S. Hybertsen, L.E. Brus, T.F. Heinz, Nano Lett. 15(5), 2992–2997 (2015). https://doi.org/10.1021/nl504868p

    Article  CAS  Google Scholar 

  11. K.F. Mak, K. He, J. Shan, T.F. Heinz, Nature Nanotechnol. 7, 494–498 (2012). https://doi.org/10.1038/nnano.2012.96

    Article  CAS  Google Scholar 

  12. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z.Q. Qiu, R.J. Cava, S.G. Louie, J. Xia, X. Zhang, Nature 546, 265–269 (2017). https://doi.org/10.1038/nature22060

    Article  CAS  Google Scholar 

  13. V.K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M.E. Beck, K.-S. Chen, M.C. Hersam, Nature 554, 500–504 (2018). https://doi.org/10.1038/nature25747

    Article  CAS  Google Scholar 

  14. S.M. Hus, R. Ge, P.-A. Chen, L. Liang, G.E. Donnelly, W. Ko, F. Huang, M.-H. Chiang, A.-P. Li, D. Akinwande, Nat. Nanotechnol. 16, 58–62 (2021). https://doi.org/10.1038/s41565-020-00789-w

    Article  CAS  Google Scholar 

  15. S.K. Hoeffgen, S. Metzger, M. Steffens, Front. Phys. 8, 318 (2020). https://doi.org/10.3389/fphy.2020.00318

    Article  Google Scholar 

  16. V.K. Sangwan, M.C. Hersam, Nat. Nanotechnol. 15, 517–528 (2020). https://doi.org/10.1038/s41565-020-0647-z

    Article  CAS  Google Scholar 

  17. J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8, 12–24 (2013). https://doi.org/10.1038/nnano.2012.240

    Article  CAS  Google Scholar 

  18. R. Xu, H. Jang, M.-H. Lee, D. Amanov, Y. Cho, H. Kim, S. Park, H.-J. Shin, D. Ham, Nano Lett. 19, 2411–2417 (2019). https://doi.org/10.1021/acs.nanolett.8b05140

    Article  CAS  Google Scholar 

  19. M. Wang, S. Cai, C. Pan, C. Wang, X. Lian, Y. Zhuo, K. Xu, T. Cao, X. Pan, B. Wang, S.-J. Liang, J. Yang, P. Wang, F. Miao, Nat. Electron. 1, 130–136 (2018). https://doi.org/10.1038/s41928-018-0021-4

    Article  CAS  Google Scholar 

  20. X. Yan, J.H. Qian, V.K. Sangwan, M.C. Hersam, Adv. Mater. (2022). https://doi.org/10.1002/adma.202108025

    Article  Google Scholar 

  21. V.K. Sangwan, D. Jariwala, I.S. Kim, K.-S. Chen, T.J. Marks, L.J. Lauhon, M.C. Hersam, Nat. Nanotechnol. 10, 403–406 (2015). https://doi.org/10.1038/nnano.2015.56

    Article  CAS  Google Scholar 

  22. H.-S. Lee, V.K. Sangwan, W.A.G. Rojas, H. Bergeron, H.Y. Jeong, J. Yuan, K. Su, M.C. Hersam, Adv. Funct. Mater. 30(45), 2003683 (2020). https://doi.org/10.1002/adfm.202003683

    Article  CAS  Google Scholar 

  23. J. Yuan, S.E. Liu, A. Shylendra, W.A.G. Rojas, S. Guo, H. Bergeron, S. Li, H.-S. Lee, S. Nasrin, V.K. Sangwan, A.R. Trivedi, M.C. Hersam, Nano Lett. 21(15), 6432–6440 (2021). https://doi.org/10.1021/acs.nanolett.1c00982

    Article  CAS  Google Scholar 

  24. X. Feng, S. Li, S.L. Wong, S. Tong, L. Chen, P. Zhang, L. Wang, X. Fong, D. Chi, K.-W. Ang, ACS Nano 15(1), 1764–1774 (2021). https://doi.org/10.1021/acsnano.0c09441

    Article  CAS  Google Scholar 

  25. M.G. Stanford, Y.-C. Lin, M.G. Sales, A.N. Hoffman, C.T. Nelson, K. Xiao, S. McDonnell, P.D. Rack, npj 2D Mater. Appl. 3, 13 (2019). https://doi.org/10.1038/s41699-019-0095-5

    Article  CAS  Google Scholar 

  26. Z. He, R. Zhao, X. Chen, H. Chen, Y. Zhu, H. Su, S. Huang, J. Xue, J. Dai, S. Cheng, M. Liu, X. Wang, Y. Chen, A.C.S. Appl, Mater. Interfaces 10, 42524–42533 (2018). https://doi.org/10.1021/acsami.8b17145

    Article  CAS  Google Scholar 

  27. J. Jadwiszczak, D. Keane, P. Maguire, C.P. Cullen, Y. Zhou, H. Song, C. Downing, D. Fox, N. McEvoy, R. Zhu, J. Xu, G.S. Duesberg, Z.-M. Liao, J.J. Boland, H. Zhang, ACS Nano 13, 14262–14273 (2019). https://doi.org/10.1021/acsnano.9b07421

    Article  CAS  Google Scholar 

  28. L. Madauß, O. Ochedowski, H. Lebius, B. Ban-d’tat, C.H. Naylor, A.T.C. Johnson, J. Kotakoski, M. Schleberger, 2D Mater. 4, 015034 (2017). https://doi.org/10.1088/2053-1583/4/1/015034

    Article  CAS  Google Scholar 

  29. S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, P. Samorì, Adv. Mater. 29, 1606760 (2017). https://doi.org/10.1002/adma.201606760

    Article  CAS  Google Scholar 

  30. L.H. Isherwood, G. Athwal, B.F. Spencer, C. Casiraghi, A. Baidak, J. Phys. Chem. C 125, 4211–4222 (2021). https://doi.org/10.1021/acs.jpcc.0c10095

    Article  CAS  Google Scholar 

  31. C.X. Zhang, A.K.M. Newaz, B. Wang, E.X. Zhang, G.X. Duan, D.M. Fleetwood, M.L. Alles, R.D. Schrimpf, K.I. Bolotin, S.T. Pantelides, IEEE Trans. Nucl. Sci. 61(6), 2862–2867 (2014). https://doi.org/10.1109/TNS.2014.2365522

    Article  CAS  Google Scholar 

  32. M. Ghorbani-Asl, S. Kretschmer, D.E. Spearot, A.V. Krasheninnikov, 2D Mater. 4, 025078 (2017). https://doi.org/10.1088/2053-1583/aa6b17

    Article  Google Scholar 

  33. B. Huang, F. Tian, Y. Shen, M. Zheng, Y. Zhao, J. Wu, Y. Liu, S.J. Pennycook, J.T.L. Thong, A.C.S. Appl, Mater. Interfaces 11(27), 24404–24411 (2019). https://doi.org/10.1021/acsami.9b05507

    Article  CAS  Google Scholar 

  34. E. Mitterreiter, B. Schuler, K.A. Cochrane, U. Wurstbauer, A. Weber-Bargioni, C. Kastl, A.W. Holleitner, Nano Lett. 20(6), 4437–4444 (2020). https://doi.org/10.1021/acs.nanolett.0c01222

    Article  CAS  Google Scholar 

  35. A.J. Arnold, T. Shi, I. Jovanovic, S. Das, A.C.S. Appl, Mater. Interfaces 11, 8391–8399 (2019). https://doi.org/10.1021/acsami.8b18659

    Article  CAS  Google Scholar 

  36. O. Ochedowski, K. Marinov, G. Wilbs, G. Keller, N. Scheuschner, D. Severin, M. Bender, J. Maultzsch, F.J. Tegude, M. Schleberger, J. Appl. Phys. 113, 214306 (2013). https://doi.org/10.1063/1.4808460

    Article  CAS  Google Scholar 

  37. S. Kretschmer, M. Maslov, S. Ghaderzadeh, M. Gorbani-Asl, G. Hlawacek, A.V. Krasheninnikov, A.C.S. Appl, Mater. Interfaces 10, 30827–30836 (2018). https://doi.org/10.1021/acsami.8b08471

    Article  CAS  Google Scholar 

  38. M. Schleberger, J. Kotakoski, Materials 11, 1885 (2018). https://doi.org/10.3390/ma11101885

    Article  CAS  Google Scholar 

  39. T.-Y. Kim, K. Cho, W. Park, J. Park, Y. Song, S. Hong, W.-K. Hong, T. Lee, ACS Nano 8(3), 2774–2781 (2014). https://doi.org/10.1021/nn4064924

    Article  CAS  Google Scholar 

  40. P. Dhakras, P. Agnihotri, H. Bakhru, H.L. Hughes, J.U. Lee, IEEE Trans. Nucl. Sci. 65(1), 53–57 (2018). https://doi.org/10.1109/TNS.2017.2771149

    Article  CAS  Google Scholar 

  41. S. Li, B. Li, X. Feng, L. Chen, Y. Li, L. Huang, X. Fong, K.-W. Ang, npj 2D Mater Appl. 5, 1 (2021). https://doi.org/10.1038/s41699-020-00190-0

    Article  CAS  Google Scholar 

  42. I.S. Kim, V.K. Sangwan, D. Jariwala, J.D. Wood, S. Park, K.-S. Chen, F. Shi, F. Ruiz-Zepeda, A. Ponce, M. Jose-Yacaman, V.P. Dravid, T.J. Marks, M.C. Hersam, L.J. Lauhon, ACS Nano 8(10), 10551–10558 (2014). https://doi.org/10.1021/nn503988x

    Article  CAS  Google Scholar 

  43. I. Hattar, D.C. Bufford, D.L. Buller, Nucl. Instrum. Methods Phys. Res. Sect. B 338, 56–65 (2014). https://doi.org/10.1016/j.nimb.2014.08.002

    Article  CAS  Google Scholar 

  44. C.M. Smyth, R. Addou, S. McDonnell, C.L. Hinkle, R.M. Wallace, J. Phys. Chem. C 120, 14719–14729 (2016). https://doi.org/10.1021/acs.jpcc.6b04473

    Article  CAS  Google Scholar 

  45. V.K. Sangwan, S.V. Rangnekar, J. Kang, J. Shen, H.-S. Lee, D. Lam, J. Shen, X. Liu, A.C.M. de Moraes, L. Kuo, J. Gu, H. Wang, M.C. Hersam, Adv. Funct. Materials 31(52), 2107385 (2021). https://doi.org/10.1002/adfm.202107385

    Article  CAS  Google Scholar 

  46. S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, D. Roy, Phys. Rev. B 91, 195411 (2015). https://doi.org/10.1103/PhysRevB.91.195411

    Article  CAS  Google Scholar 

  47. B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare, A.K. Sood, Phys. Rev. B 85, 161403(R) (2012). https://doi.org/10.1103/PhysRevB.85.161403

    Article  CAS  Google Scholar 

  48. Z. Kou, A. Hashemi, M.J. Puska, A.V. Krasheninnikov, H.-P. Komsa, Npj Comput. Mater. 6, 59 (2020). https://doi.org/10.1038/s41524-020-0320-y

    Article  CAS  Google Scholar 

  49. Z. Li, Y. Lv, L. Ren, J. Li, L. Kong, Y. Zeng, Q. Tao, R. Wu, H. Ma, B. Zhao, D. Wang, W. Dang, K. Chen, L. Liao, X. Duan, X. Duan, Y. Liu, Nature Commun. 11, 1151 (2020). https://doi.org/10.1038/s41467-020-15023-3

    Article  CAS  Google Scholar 

  50. A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng, Q. Wang, N. Lu, M.J. Kim, K. Cho, R. Addou, C.L. Hinkle, J. Appenzeller, R.M. Wallace, Nano Lett. 16, 5437–5443 (2016). https://doi.org/10.1021/acs.nanolett.6b01853

    Article  CAS  Google Scholar 

  51. Z. Liu, M. Amani, S. Majmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A.G. Birdwell, F.J. Crowne, R. Vajtai, B.I. Yakobson, Z. Xia, M. Dubey, P.M. Ajayan, J. Lou, Nat. Commun. 5, 5246 (2014). https://doi.org/10.1038/ncomms6246

    Article  Google Scholar 

  52. T. Verhagen, V.L.P. Guerra, G. Haider, M. Kalbac, J. Vejpravova, Nanoscale 12, 3019 (2020). https://doi.org/10.1039/C9NR07246B

    Article  CAS  Google Scholar 

  53. D. Li, B. Wu, X. Zhu, J. Wang, B. Ryu, W.D. Lu, W. Lu, X. Liang, ACS Nano 12, 9240–9252 (2018). https://doi.org/10.1021/acsnano.8b03977

    Article  CAS  Google Scholar 

  54. M. G. Stanford P. R. Pudasaini, E. T. Gallmeier, N. Cross, L. Liang, A. Oyedele, G. Duscher, M. Mahjouri-Samani, K. Wang, K. Xiao, D. B. Geohegan, A. Belianinov, B. G. Sumpter, P. D. Rack, Adv. Funct. Mater. 27, 36, 1702829 (2017) https://doi.org/10.1002/adfm.201702829

  55. I.P. Thiruraman, P.M. Das, M. Drndić, Adv. Funct. Materials 29(52), 1904668 (2019). https://doi.org/10.1002/adfm.201904668

    Article  CAS  Google Scholar 

  56. Y. Chen, S. Huang, X. Ji, K. Adepalli, K. Yin, X. Ling, X. Wang, J. Xue, M. Dresselhaus, J. Kong, B. Yildiz, ACS Nano 12, 2569–2579 (2018). https://doi.org/10.1021/acsnano.7b08418

    Article  CAS  Google Scholar 

  57. Q. Chen, H. Li, S. Zhou, W. Xu, J. Chen, H. Sawada, C.S. Allen, A.I. Kirkland, J.C. Grossman, J.H. Warner, ACS Nano 12(8), 7721–7730 (2018). https://doi.org/10.1021/acsnano.8b01610

    Article  CAS  Google Scholar 

  58. I. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li, Y.-F. Lim, X. Feng, W.C. Tan, X. Huang, L. Chen, L. Liu, J. Chen, X. Gong, C. Zhu, X. Liu, Y.-W. Zhang, D. Chi, K.-W. Ang, Adv. Funct. Mater. 29(25), 1901106 (2019). https://doi.org/10.1002/adfm.201901106

    Article  CAS  Google Scholar 

  59. I.G. Sensoy, D. Vinichenko, W. Chen, C.M. Friend, E. Kaxiras, Phys. Rev. B 95, 014106 (2017). https://doi.org/10.1103/PhysRevB.95.014106

    Article  CAS  Google Scholar 

  60. H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Phys Rev. B 88, 035301 (2013). https://doi.org/10.1103/PhysRevB.88.035301

    Article  CAS  Google Scholar 

  61. J. Hong, Y. Pan, Z. Hu, D. Lv, C. Jin, W. Ji, J. Yuan, Z. Zhang, Nano Lett. 17(6), 3383–3390 (2017). https://doi.org/10.1021/acs.nanolett.6b05342

    Article  CAS  Google Scholar 

  62. R.A. Mewaldt, Adv. Space Res. 14(10), 737–747 (1994). https://doi.org/10.1016/0273-1177(94)90536-3

    Article  CAS  Google Scholar 

  63. S.A. Briggs, M. Steckbeck, N. M. Heckman, T. A. Furnish, D. C. Bufford, D. Buller, B. L. Boyce, K. Hattar, Nucl. Instrum. Methods Phys. Res., Sect. B 509, 39–47 (2021) https://doi.org/10.1016/j.nimb.2021.08.011

  64. A. Herrera-Gomez, A. Hegedus, P.L. Meissner, Appl. Phys. Lett. 81, 1014–1016 (2002). https://doi.org/10.1063/1.1494121

    Article  CAS  Google Scholar 

Download references

Funding

This research was primarily supported by the Laboratory Directed Research and Development Program at Sandia National Laboratories (SNL). This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. SNL is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the US DOE National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US DOE or the United States Government. This work also made use of the Northwestern University NUANCE Center and Micro/Nano Fabrication Facility (NUFAB), which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the MRSEC program (NSF DMR-1720139) at the Materials Research Center, the International Institute for Nanotechnology (IIN), the Keck Foundation, and the State of Illinois.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by CMS, SSC, and KH. Materials synthesis and device fabrication were completed by XY, SEL, JY, and MPB. Heavy ion irradiation was performed by EL, NJM, and KH. Materials characterization and corresponding data analysis were performed by CMS, NJM, and PL. Device characterization and corresponding data analysis were performed by JMC. The manuscript was written by CMS and all authors reviewed previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christopher M. Smyth.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3314 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smyth, C.M., Cain, J.M., Lang, E.J. et al. Resilience of monolayer MoS2 memtransistor under heavy ion irradiation. Journal of Materials Research 37, 2723–2737 (2022). https://doi.org/10.1557/s43578-022-00642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00642-x

Keywords

Navigation