Skip to main content

Advertisement

Log in

Effects of Ar+ irradiation on the performance of memristor based on single-crystalline LiNbO3 thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Memristor has become the most promising building block for neuromorphic computing. The memristors based on single-crystalline oxide film exhibit some advantages, such as the uniformity of device property. But currently the high energy consumption of memristor still hinders its future application. In this work, we used Ar+ irradiation to modulate the performance of memristor based on single-crystalline LiNbO3 (LN) thin film. During the Ar+ irradiation, the reduction of thin film thickness and the modulation of oxygen vacancies were observed simultaneously. The electroforming voltage and operation voltage of the memristors were reduced effectively, which makes the memristor become more energy-efficient. After Ar+ irradiation, the advantage in uniformity of device properties still maintained. The memristors based on Ar+ irradiated LN thin film also showed synaptic plasticity and self-rectifying property. The etching effect and preferential sputtering effect of Ar+ irradiation were observed and investigated, respectively. The synergy between the two effects was also discussed. This work provides the method to overcome the obstacle of application of memristor based on single-crystalline oxide thin film to neuromorphic computing, which makes the advantages of memristor based on single-crystalline oxide thin film, such as the uniformity of device property, fully used of.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. L. Chua, IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80–83 (2008)

    Article  CAS  Google Scholar 

  3. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297–1301 (2010)

    Article  CAS  Google Scholar 

  4. Z. Wang, M. Yin, T. Zhang, Y. Cai, Y. Wang, Y. Yang, R. Huang, Nanoscale 8, 14015–14022 (2016)

    Article  CAS  Google Scholar 

  5. G. Niu, P. Calka, M. Auf der Maur, F. Santoni, S. Guha, M. Fraschke, P. Hamoumou, B. Gautier, E. Perez, C. Walczyk, C. Wenger, A. Di Carlo, L. Alff, T. Schroeder, Sci. Rep. 6, 25757 (2016)

    Article  CAS  Google Scholar 

  6. V. Milo, C. Zambelli, P. Olivo, E. Pérez, M.K. Mahadevaiah, O.G. Ossorio, C. Wenger, D. Ielmini, APL Mater. (2019). https://doi.org/10.1063/1.5108650

    Article  Google Scholar 

  7. J. Ge, M. Chaker, ACS Appl. Mater. Interfaces 9, 16327–16334 (2017)

    Article  CAS  Google Scholar 

  8. M. Xiao, K.P. Musselman, W.W. Duley, N.Y. Zhou, Nanomicro Lett. 9, 15 (2017)

    Google Scholar 

  9. X. Pan, Y. Shuai, C. Wu, W. Luo, X. Sun, Y. Yuan, S. Zhou, X. Ou, W. Zhang, Appl. Surf. Sci. 389, 1104–1107 (2016)

    Article  CAS  Google Scholar 

  10. G. Chen, P. Zhang, L. Pan, L. Qi, F. Yu, C. Gao, J. Mater. Chem. C 5, 9799–9805 (2017)

    Article  CAS  Google Scholar 

  11. H. Nili, S. Walia, S. Balendhran, D.B. Strukov, M. Bhaskaran, S. Sriram, Adv. Funct. Mater. 24, 6741–6750 (2014)

    Article  CAS  Google Scholar 

  12. S.J. Song, J.Y. Seok, J.H. Yoon, K.M. Kim, G.H. Kim, M.H. Lee, C.S. Hwang, Sci. Rep. 3, 3443 (2013)

    Article  Google Scholar 

  13. D.-S. Shang, L. Shi, J.-R. Sun, B.-G. Shen, Nanotechnology 22, 254008 (2011)

    Article  Google Scholar 

  14. M. Lanza, G. Bersuker, M. Porti, E. Miranda, M. Nafría, X. Aymerich, Appl. Phys. Lett. 101(19), 193502 (2012)

    Article  Google Scholar 

  15. M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Nature 521, 61–64 (2015)

    Article  CAS  Google Scholar 

  16. S. Huang, W. Luo, X. Bai, L. Lv, X. Pan, Y. Shuai, C. Wu, W. Zhang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. (2021)

  17. T. You, K. Huang, X. Zhao, A. Yi, C. Chen, W. Ren, T. Jin, J. Lin, Y. Shuai, W. Luo, M. Zhou, W. Yu, X. Ou, Sci. Rep. 9, 19134 (2019)

    Article  CAS  Google Scholar 

  18. X. Pan, Y. Shuai, C. Wu, W. Luo, X. Sun, H. Zeng, S. Zhou, R. Böttger, X. Ou, T. Mikolajick, W. Zhang, H. Schmidt, Appl. Phys. Lett. 108(3), 032904 (2016)

    Article  Google Scholar 

  19. H.S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Proc. IEEE 100, 1951–1970 (2012)

    Article  CAS  Google Scholar 

  20. M.H. Jang, R. Agarwal, P. Nukala, D. Choi, A.T. Johnson, I.W. Chen, R. Agarwal, Nano Lett. 16, 2139–2144 (2016)

    Article  CAS  Google Scholar 

  21. J. Reinisch, F. Schrempel, T. Gischkat, W. Wesch, J. Electrochem. Soc. 155, 298 (2008)

    Article  Google Scholar 

  22. X. Bai, Y. Shuai, C. Gong, C. Wu, W. Luo, R. Böttger, S. Zhou, W. Zhang, Appl. Surf. Sci. 434, 669–673 (2018)

    Article  CAS  Google Scholar 

  23. Y. Shuai, N. Du, X. Ou, W. Luo, S. Zhou, O.G. Schmidt, H. Schmidt, Phys. Status Solidi C 10, 636–639 (2013)

    Article  CAS  Google Scholar 

  24. X. Ou, Y. Shuai, W. Luo, P.F. Siles, R. Kogler, J. Fiedler, H. Reuther, S. Zhou, R. Hubner, S. Facsko, M. Helm, T. Mikolajick, O.G. Schmidt, H. Schmidt, ACS Appl. Mater. Interfaces 5, 12764–12771 (2013)

    Article  CAS  Google Scholar 

  25. M. Tamura, S. Yoshikado, Sci. Technol. Adv. Mater. 2, 563 (2003)

    Google Scholar 

  26. X. Pan, Y. Shuai, C. Wu, L. Zhang, H. Guo, H. Cheng, Y. Peng, S. Qiao, W. Luo, T. Wang, X. Sun, H. Zeng, J. Zhang, W. Zhang, X. Ou, N. Du, H. Schmidt, Appl. Surf. Sci. 484, 751–758 (2019)

    Article  CAS  Google Scholar 

  27. W. He, J. Ran, J. Niu, G. Yang, Z. Ou, Z. He, J. Hazard Mater. 397, 122646 (2020)

    Article  CAS  Google Scholar 

  28. M. Lu, B.N. Makarenko, Y.Z. Hu, J.W. Rabalais, J. Chem. Phys. 118, 2873 (2003)

    Article  CAS  Google Scholar 

  29. S. Berg, I.V. Katardjiev, J. Vac. Sci. Technol. A 17, 1916–1925 (1999)

    Article  CAS  Google Scholar 

  30. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.B. Kley, A. Tunnermann, T. Pertsch, Opt. Lett. 40, 2715–2718 (2015)

    Article  CAS  Google Scholar 

  31. D.-K. Hwang, M. Misra, Y.-E. Lee, S.-D. Baek, J.-M. Myoung, T.I. Lee, Appl. Surf. Sci. 405, 344–349 (2017)

    Article  CAS  Google Scholar 

  32. M. Sumets, J. Nonlinear Opt. Phys. Mater. 26(1), 1750011 (2017)

    Article  CAS  Google Scholar 

  33. G.D. Boyd, W.L. Bond, H.L. Carter, J. Appl. Phys. 38, 1941–1943 (1967)

    Article  CAS  Google Scholar 

  34. I. Marri, S. Ossicini, Solid State Commun. 147, 205–207 (2008)

    Article  CAS  Google Scholar 

  35. J. Robertson, R. Gillen, Microelectron. Eng. 109, 208–210 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by China National Key Research and Development Plan Project (2017YFB0406402), and the National Natural Science Foundation of China (Nos. 52073041, 51772044, 51602039).

Funding

China National Key Research and Development Plan Project (2017YFB0406402); National Natural Science Foundation of China (No. 52073041); National Natural Science Foundation of China (No. 51772044); National Natural Science Foundation of China (No. 51602039).

Author information

Authors and Affiliations

Authors

Contributions

QX contributed to investigation and writing—original draft. XP contributed to methodology, writing—review and editing. WL contributed to methodology and review. YS contributed to Supervision. CW contributed to conceptualization. JW contributed to data curation. SH contributed to data curation. WL contributed to data curation. WZ contributed to project administration.

Corresponding authors

Correspondence to Xinqiang Pan or Wenbo Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1820 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Pan, X., Luo, W. et al. Effects of Ar+ irradiation on the performance of memristor based on single-crystalline LiNbO3 thin film. J Mater Sci: Mater Electron 32, 20817–20826 (2021). https://doi.org/10.1007/s10854-021-06595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06595-x

Navigation