Skip to main content
Log in

Hydrothermally grown MoS2 nanosheets under non-equilibrium condition and its electrocatalytic hydrogen evolution performance

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molybdenum disulphide (MoS2) is a potential noble metal-free electrocatalyst for the Hydrogen Evolution Reaction (HER). However, it’s HER activity is largely governed by the existence of edge sites created by the sulphur non-stoichiometry. Herein we report synthesis of highly disordered 2D-MoS2 nanosheets by simple hydrothermal route under a non-equilibrium growth condition. Excess sulphur content in the precursor than that required to synthesize stoichiometric MoS2 causes wide variation in their morphologies and physico-chemical properties. The sulphur enriched MoS2+δ nanosheets with high density of ripples and wrinkles show the lowest overpotential of 234 mV at a current density of 10 mA/cm2 and also low Tafel slope of 82 mV/dec in acidic electrolyte. Further, a Density Functional Theory-based formalism is employed to mimic various possible configuration of sulphur addition within the supercell and to understand its role over hydrogen absorption and desorption processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. L. Yang, W. Zhou, D. Hou, K. Zhou, G. Li, Z. Tang, L. Li, S. Chen, Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction. Nanoscale 7(12), 5203–5208 (2015)

    Article  CAS  Google Scholar 

  2. D. Wang, X. Zhang, D. Zhang, Y. Shen, Z. Wu, Influence of Mo/P ratio on CoMoP nanoparticles as highly efficient HER catalysts. Appl. Catal. A 511, 11–15 (2016)

    Article  CAS  Google Scholar 

  3. W. Zhou, D. Hou, Y. Sang, S. Yao, J. Zhou, G. Li, L. Li, H. Liu, S. Chen, MoO2 nanobelts@ nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2(29), 11358–11364 (2014)

    Article  CAS  Google Scholar 

  4. T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834), 100–102 (2007)

    Article  CAS  Google Scholar 

  5. S.M. Tan, A. Ambrosi, Z. Sofer, Š Huber, D. Sedmidubský, M. Pumera, Pristine basal-and edge-plane-oriented molybdenite MoS2 exhibiting highly anisotropic properties. Chem. A Eur. J. 21(19), 7170–7178 (2015)

    Article  CAS  Google Scholar 

  6. Y.H. Chang, C.T. Lin, T.Y. Chen, C.L. Hsu, Y.H. Lee, W. Zhang, K.H. Wei, L.J. Li, Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 25(5), 756–760 (2013)

    Article  CAS  Google Scholar 

  7. Y.-R. An, X.-L. Fan, Z.-F. Luo, W.-M. Lau, Nanopolygons of monolayer MoS2: best morphology and size for HER catalysis. Nano Lett. 17(1), 368–376 (2017)

    Article  CAS  Google Scholar 

  8. J.D. Benck, T.R. Hellstern, J. Kibsgaard, P. Chakthranont, T.F. Jaramillo, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4(11), 3957–3971 (2014)

    Article  CAS  Google Scholar 

  9. H.I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J.R. Long, C.J. Chang, A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069), 698–702 (2012)

    Article  CAS  Google Scholar 

  10. H. Van Swygenhoven, Grain boundaries and dislocations. Science 296(5565), 66–67 (2002)

    Article  Google Scholar 

  11. E.G. Seebauer, K.W. Noh, Trends in semiconductor defect engineering at the nanoscale. Mater. Sci. Eng. R. Rep. 70(3–6), 151–168 (2010)

    Article  CAS  Google Scholar 

  12. J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013)

    Article  CAS  Google Scholar 

  13. O. Bahl, E. Evans, J. Thomas, The identification and some properties of point defects and non-basal dislocations in molybdenite surfaces. Proc. R. Soc. Lond. 306(1484), 53–65 (1968)

    CAS  Google Scholar 

  14. X. Hai, W. Zhou, S. Wang, H. Pang, K. Chang, F. Ichihara, J. Ye, Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction. Nano Energy 39, 409–417 (2017)

    Article  CAS  Google Scholar 

  15. Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28(10), 1917–1933 (2016)

    Article  CAS  Google Scholar 

  16. W. Lee, H.J. Jung, M.H. Lee, Y.B. Kim, J.S. Park, R. Sinclair, F.B. Prinz, Oxygen surface exchange at grain boundaries of oxide ion conductors. Adv. Func. Mater. 22(5), 965–971 (2012)

    Article  CAS  Google Scholar 

  17. J. Xie, C. Wu, S. Hu, J. Dai, N. Zhang, J. Feng, J. Yang, Y. Xie, Ambient rutile VO2 (R) hollow hierarchitectures with rich grain boundaries from new-state nsutite-type VO2, displaying enhanced hydrogen adsorption behavior. Phys. Chem. Chem. Phys. 14(14), 4810–4816 (2012)

    Article  CAS  Google Scholar 

  18. C. Tsai, H. Li, S. Park, J. Park, H.S. Han, J.K. Nørskov, X. Zheng, F. Abild-Pedersen, Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 8(1), 1–8 (2017)

    Article  CAS  Google Scholar 

  19. L. Yu, A. Ruzsinszky, Q. Yan, Chemisorption can reverse defect-defect interaction on heterogeneous catalyst surfaces. J. Phys. Chem, Lett. 10(23), 7311–7317 (2019)

    Article  CAS  Google Scholar 

  20. L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 13(6), 6824–6834 (2019)

    Article  CAS  Google Scholar 

  21. F. Li, Q. Tang, First-principles calculations of TiB MBene monolayers for hydrogen evolution. ACS Appl. Nano Mater. 2(11), 7220–7229 (2019)

    Article  CAS  Google Scholar 

  22. J. Yang, Y. Wang, M.J. Lagos, V. Manichev, R. Fullon, X. Song, D. Voiry, S. Chakraborty, W. Zhang, P.E. Batson, Single atomic vacancy catalysis. ACS Nano 13(9), 9958–9964 (2019)

    Article  CAS  Google Scholar 

  23. G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S.T. Pantelides, W. Zhou, R. Vajtai, P.M. Ajayan, Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 16(2), 1097–1103 (2016)

    Article  CAS  Google Scholar 

  24. X. Gao, J. Qi, S. Wan, W. Zhang, Q. Wang, R. Cao, Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution. Small 14(48), 1803361 (2018)

    Article  CAS  Google Scholar 

  25. D. Zhu, J. Liu, Y. Zhao, Y. Zheng, S.Z. Qiao, Engineering 2D metal–organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small 15(14), 1805511 (2019)

    Article  CAS  Google Scholar 

  26. Y. Jiang, D. Wang, J. Li, M. Li, Z. Pan, H. Ma, G. Lv, W. Qu, L. Wang, Z. Tian, Designing MoS2nanocatalysts with increased exposure of active edge sites for anthracene hydrogenation reaction. Catal. Sci. Technol. 7(14), 2998–3007 (2017)

    Article  CAS  Google Scholar 

  27. C. Huang, X. Wang, D. Wang, W. Zhao, K. Bu, J. Xu, X. Huang, Q. Bi, J. Huang, F. Huang, Atomic pillar effect in PdxNbS2 to boost basal plane activity for stable hydrogen evolution. Chem. Mater. 31(13), 4726–4731 (2019)

    Article  CAS  Google Scholar 

  28. C. Guo, H. Li, W. Zhao, J. Pan, T. Lin, J. Xu, M. Chen, F. Huang, High-quality single-layer nanosheets of MS2 (M= Mo, Nb, Ta, Ti) directly exfoliated from AMS 2 (A= Li, Na, K) crystals. J. Mater. Chem. C 5(24), 5977–5983 (2017)

    Article  CAS  Google Scholar 

  29. X. Wang, Y. Zhang, H. Si, Q. Zhang, J. Wu, L. Gao, X. Wei, Y. Sun, Q. Liao, Z. Zhang, Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 142(9), 4298–4308 (2020)

    Article  CAS  Google Scholar 

  30. W. Zhou, L. Dong, L. Tan, Q. Tang, First-principles study of sulfur vacancy concentration effect on the electronic structures and hydrogen evolution reaction of MoS2. Nanotechnology 32(14), 145718 (2021)

    Article  CAS  Google Scholar 

  31. X. Zhang, Z. Lai, C. Tan, H. Zhang, Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew. Chem. Int. Ed. 55(31), 8816–8838 (2016)

    Article  CAS  Google Scholar 

  32. L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, O.G. Schmidt, Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 25(8), 1180–1184 (2013)

    Article  CAS  Google Scholar 

  33. S. Park, S. Siahrostami, J. Park, A.H.B. Mostaghimi, T.R. Kim, L. Vallez, T.M. Gill, W. Park, K.E. Goodson, R. Sinclair, Effect of adventitious carbon on pit formation of monolayer MoS2. Adv. Mater. 32(37), 2003020 (2020)

    Article  CAS  Google Scholar 

  34. M. He, F. Kong, G. Yin, Z. Lv, X. Sun, H. Shi, B. Gao, Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS2 nanosheets. RSC Adv. 8(26), 14369–14376 (2018)

    Article  CAS  Google Scholar 

  35. D. Merki, S. Fierro, H. Vrubel, X. Hu, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2(7), 1262–1267 (2011)

    Article  CAS  Google Scholar 

  36. M. Josline, S.S. Kumar, Hydrothermal synthesis of inter-layer expanded MoS2 as an alternate non-precious electro-catalyst for hydrogen evolution reaction.

  37. J.R. Lince, MoS2−xOx solid solutions in thin films produced by rf-sputter-deposition. J. Mater. Res. 5(1), 218–222 (1990)

    Article  CAS  Google Scholar 

  38. X. Zhang, W. Lauwerens, L. Stals, J. He, J.-P. Celis, Fretting wear rate of sulphur deficient MoSx coatings based on dissipated energy. J. Mater. Res. 16(12), 3567–3574 (2001)

    Article  CAS  Google Scholar 

  39. Y. Chen, J.-J. Deng, W.-W. Yao, J.I. Gurti, W. Li, W.-J. Wang, J.-X. Yao, X.-L. Ding, Non-stoichiometric molybdenum sulfide clusters and their reactions with the hydrogen molecule. Phys. Chem. Chem. Phys. 23(1), 347–355 (2021)

    Article  Google Scholar 

  40. N. Choudhary, M.D. Patel, J. Park, B. Sirota, W. Choi, Synthesis of large scale MoS2 for electronics and energy applications. J. Mater. Res. 31(7), 824–831 (2016)

    Article  CAS  Google Scholar 

  41. L.M. Martinez, C. Karthik, M. Kongara, S.R. Singamaneni, Paramagnetic defects in hydrothermally grown few-layered MoS2 nanocrystals. J. Mater. Res. 33(11), 1565–1572 (2018)

    Article  CAS  Google Scholar 

  42. F. Bertoldo, R.R. Unocic, Y.-C. Lin, X. Sang, A.A. Puretzky, Y. Yu, D. Miakota, C.M. Rouleau, J. Schou, K.S. Thygesen, Intrinsic defects in MoS2 grown by pulsed laser deposition: from monolayers to bilayers. ACS Nano 15(2), 2858–2868 (2021)

    Article  CAS  Google Scholar 

  43. S. Zhou, J. Han, J. Sun, D.J. Srolovitz, MoS2 edges and heterophase interfaces: energy, structure and phase engineering. 2D Materials 4(2), 025080 (2017)

    Article  CAS  Google Scholar 

  44. R.K. Tiwari, J. Yang, M. Saeys, C. Joachim, Surface reconstruction of MoS2 to Mo2S3. Surf. Sci. 602(15), 2628–2633 (2008)

    Article  CAS  Google Scholar 

  45. G. Hu, V. Fung, X. Sang, R.R. Unocic, P. Ganesh, Superior electrocatalytic hydrogen evolution at engineered non-stoichiometric two-dimensional transition metal dichalcogenide edges. J. Mater. Chem. A 7(31), 18357–18364 (2019)

    Article  CAS  Google Scholar 

  46. P. Afanasiev, The influence of reducing and sulfiding conditions on the properties of unsupported MoS2-based catalysts. J. Catal. 269(2), 269–280 (2010)

    Article  CAS  Google Scholar 

  47. M. Placidi, M. Dimitrievska, V. Izquierdo-Roca, X. Fontané, A. Castellanos-Gomez, A. Pérez-Tomás, N. Mestres, M. Espindola-Rodriguez, S. López-Marino, M. Neuschitzer, Multiwavelength excitation Raman scattering analysis of bulk and two-dimensional MoS2: vibrational properties of atomically thin MoS2 layers. 2D Materials 2(3), 035006 (2015)

    Article  CAS  Google Scholar 

  48. S. Bolar, S. Shit, J.S. Kumar, N.C. Murmu, R.S. Ganesh, H. Inokawa, T. Kuila, Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. Appl. Catal. B 254, 432–442 (2019)

    Article  CAS  Google Scholar 

  49. M.-R. Gao, M.K. Chan, Y. Sun, Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 6(1), 1–8 (2015)

    Article  Google Scholar 

  50. S. Bolar, S. Shit, N.C. Murmu, P. Samanta, T. Kuila, Activation strategy of MoS2 as HER electrocatalyst through doping-induced lattice strain, band gap engineering, and active crystal plane design. ACS Appl. Mater. Interfaces 13(1), 765–780 (2021)

    Article  CAS  Google Scholar 

  51. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011)

    Article  CAS  Google Scholar 

  52. J. Thomas, Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. Trans. Faraday Soc. 57, 1603–1611 (1961)

    Article  CAS  Google Scholar 

  53. S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 6(12), 8069–8097 (2016)

    Article  CAS  Google Scholar 

  54. S. Bolar, S. Shit, N.C. Murmu, T. Kuila, Doping-assisted phase changing effect on MoS2 towards hydrogen evolution reaction in acidic and alkaline pH. ChemElectroChem 7(1), 336–346 (2020)

    Article  CAS  Google Scholar 

  55. J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5(11), 909–913 (2006)

    Article  CAS  Google Scholar 

  56. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004)

    Article  CAS  Google Scholar 

  57. A. Nilsson, L. Pettersson, B. Hammer, T. Bligaard, C.H. Christensen, J.K. Nørskov, The electronic structure effect in heterogeneous catalysis. Catal. Lett. 100(3), 111–114 (2005)

    Article  CAS  Google Scholar 

  58. B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376(6537), 238–240 (1995)

    Article  CAS  Google Scholar 

  59. R. Narasimman, M. Waldiya, E. Karthik, I. Mukhopadhyay, A. Ray, Transition metal dichalcogenide anchored in 3D nickel framework with graphene support for efficient electrocatalytic hydrogen evolution. Adv. Sustain. Syst. 3(7), 1800168 (2019)

    Article  CAS  Google Scholar 

  60. A.B. Laursen, A.S. Varela, F. Dionigi, H. Fanchiu, C. Miller, O.L. Trinhammer, J. Rossmeisl, S. Dahl, Electrochemical hydrogen evolution: Sabatier’s principle and the volcano plot. J. Chem. Educ. 89(12), 1595–1599 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Department of Science and Technology (DST) and Science and Engineering Research Board (SERB), Government of India is being thankfully acknowledged for the grant under the project no. CRG/2018/002254. Authors acknowledge Solar Research & Development Center (SRDC), PDEU for providing FE-SEM, XRD, Raman and Electrochemical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Ray.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, N., Mukhopadhyay, I. & Ray, A. Hydrothermally grown MoS2 nanosheets under non-equilibrium condition and its electrocatalytic hydrogen evolution performance. Journal of Materials Research 37, 1892–1903 (2022). https://doi.org/10.1557/s43578-022-00601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00601-6

Keywords

Navigation