Skip to main content
Log in

Synthesis and characterization of methyl indium 4,6-dimethyl-2-pyrimidyl selenolates and its utility for indium selenide, CuInSe2 nanostructures and indium selenide thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Air stable organoindium complex, [MeIn{SeC4H(Me-4,6)2N2}2] (1) have been synthesized by the treatment of MeInCl2 with NaSepymMe2. The complex was characterized by elemental analyses, NMR spectroscopy and scXRD technique. Thermolysis of 1 in OAm/ODE and OAm/OA resulted in β-In2Se3 nanosheets and γ-In2Se3 nanobullets, while the same complex thermolyzed together with Cu(acac)2 yielded CuInSe2 nanostructures. The complex has also been used for the deposition of indium selenide thin films by aerosol-assisted chemical vapor deposition on different substrates at 400 and 450 °C. Crystal structure, elemental composition, and bandgap of these materials were investigated by p-XRD, EDS, and DRS technique, respectively. The morphology, surface topography, and roughness of these materials were determined by HRTEM, SEM, and AFM. SEM micrographs of the thin films revealed porous sheets. The direct bandgap of these materials was blue-shifted relative to the bulk material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from GKN upon reasonable request.

References

  1. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014)

    Article  CAS  Google Scholar 

  2. A. Politano, D. Campi, M. Cattelan, I. Ben Amara, S. Jaziri, A. Mazzotti, A. Barinov, B. Gürbulak, S. Duman, S. Agnoli, L.S. Caputi, G. Granozzi, A. Cupolillo, Indium selenide: an insight into electronic band structure and surface excitations. Sci. Rep. 7, 3445 (2017)

    Article  CAS  Google Scholar 

  3. C. Amory, J.C. Bernede, S. Marsillac, Study of a growth instability of γ-In2Se3. J. Appl. Phys. 94, 6945–6948 (2003). https://doi.org/10.1063/1.1622117

    Article  CAS  Google Scholar 

  4. G. Almeida, S. Dogan, G. Bertoni, C. Giannini, R. Gaspari, S. Perissinotto, R. Krahne, S. Ghosh, L. Manna, Colloidal monolayer β-In2Se3 nanosheets with high photoresponsivity. J. Am. Chem. Soc. 139, 3005–3011 (2017). https://doi.org/10.1021/jacs.6b11255

    Article  CAS  Google Scholar 

  5. J. Jasinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G.A. Gibson, C.C. Yang, Crystal structure of κ-In2Se3. Appl. Phys. Lett. 81, 4356–4358 (2002). https://doi.org/10.1063/1.1526925

    Article  CAS  Google Scholar 

  6. W. Li, F.P. Sabino, F.C. de Lima, T. Wang, R.H. Miwa, A. Janotti, Large disparity between optical and fundamental band gaps in layered In2Se3. Phys. Rev. B 98, 165134 (2018). https://doi.org/10.1103/PhysRevB.98.165134

    Article  CAS  Google Scholar 

  7. C.H. de Groot, J.S. Moodera, Growth and characterization of a novel In2Se3 structure. J. Appl. Phys. 89, 4336–4340 (2001). https://doi.org/10.1063/1.1355287

    Article  CAS  Google Scholar 

  8. C. Julien, A. Chevy, D. Siapkas, Optical properties of In2Se3 phases. Phys. Status Solidi A 118, 553–559 (1990)

    Article  CAS  Google Scholar 

  9. S.S. Lee, K.W. Seo, I.W. Shim, Preparation of In2Se3 thin films by MOCVD with a new In–Se single source precursor. Bull. Korean Chem. Soc. 27, 147–149 (2006). https://doi.org/10.5012/bkcs.2006.27.1.147

    Article  CAS  Google Scholar 

  10. J.F. Sánchez-Royo, G. Muñoz-Matutano, M. Brotons-Gisbert, J.P. Martínez-Pastor, A. Segura, A. Cantarero, R. Mata, J. Canet-Ferrer, G. Tobias, E. Canadell, J. Marqués-Hueso, B.D. Gerardot, Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 7, 1556–1568 (2014). https://doi.org/10.1007/s12274-014-0516-x

    Article  CAS  Google Scholar 

  11. C.-H. Ho, Thickness-dependent carrier transport and optically enhanced transconductance gain in III–VI multilayer InSe. 2D Mater. 3, 025019 (2016)

    Article  Google Scholar 

  12. G. Han, Z.-G. Chen, J. Drennan, J. Zou, Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small 10, 2747–2765 (2014). https://doi.org/10.1002/smll.201400104

    Article  CAS  Google Scholar 

  13. S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A.D. Mohite, P.M. Ajayan, Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano 8, 1263–1272 (2014). https://doi.org/10.1021/nn405036u

    Article  CAS  Google Scholar 

  14. B. Gürbulaka, M. Şata, S. Dogan, S. Duman, A. Ashkhasi, E.F. Keskenler, Structural characterizations and optical properties of InSe and InSe: Ag semiconductors grown by Bridgman/Stockbarger technique. Physica E 64, 106–111 (2014). https://doi.org/10.1016/j.physe.2014.07.002

    Article  CAS  Google Scholar 

  15. G.W. Mudd, A. Patanè, Z.R. Kudrynskyi, M.W. Fay, O. Makarovsky, L. Eaves, Z.D. Kovalyuk, V. Zólyomi, V. Falko, Quantum confined acceptors and donors in InSe nanosheets. Appl. Phys. Lett. 105, 221909 (2014). https://doi.org/10.1063/1.4903738

    Article  CAS  Google Scholar 

  16. G. Gordillo, New materials used as optical window in thin film solar cells. Surf. Rev. Lett. 9, 1675–1680 (2002). https://doi.org/10.1142/S0218625X02004207

    Article  CAS  Google Scholar 

  17. F.A. Frame, E.C. Carroll, D.S. Larsen, M. Sarahan, N.D. Browning, F.E. Osterloh, First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light. Chem. Commun. (2008). https://doi.org/10.1039/B718796C

    Article  Google Scholar 

  18. M. Dai, H. Chen, R. Feng, W. Feng, Y. Hu, H. Yang, G. Liu, X. Chen, J. Zhang, C.Y. Xu, P.A. Hu, A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano 12, 8739–8747 (2018). https://doi.org/10.1021/acsnano.8b04931

    Article  CAS  Google Scholar 

  19. K.J. Lai, H.L. Peng, W. Kundhikanjana, D.T. Schoen, C. Xie, S. Meister, Y. Cui, M.A. Kelly, Z.X. Shen, Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy. Nano Lett. 9, 1265–1269 (2009). https://doi.org/10.1021/nl900222j

    Article  CAS  Google Scholar 

  20. L. Chen, H. Miao, T. Han, J. Feng, E. Liu, Y. Cheng, J. Mu, J. Fan, X. Hu, The optimum preparation of InSe nanosheets and research of photoelectric response characteristics. J. Phys. D 51, 085101 (2018). https://doi.org/10.1088/1361-6463/aaa837

    Article  CAS  Google Scholar 

  21. C.L. Hsin, J.H. Huang, P. Spiewak, Ł Ciupiński, S.W. Lee, Anisotropy of thermal conductivity in In2Se3 nanostructures. Appl. Surf. Sci. 494, 867–870 (2019). https://doi.org/10.1016/j.apsusc.2019.07.233

    Article  CAS  Google Scholar 

  22. X. Wei, H. Feng, L. Li, J. Gong, K. Jiang, S. Xue, P.K. Chu, Synthesis of tetragonal prismatic γ-In2Se3 nanostructures with predominantly 110 facets and photocatalytic degradation of tetracycline. Appl. Catal. B 260, 118218 (2020). https://doi.org/10.1016/j.apcatb.2019.118218

    Article  CAS  Google Scholar 

  23. L. Wang, P. Hu, Y. Long, Z. Liu, X. He, Recent advances in ternary two-dimensional materials: synthesis, properties and applications. J. Mater. Chem. A 5, 22855–22876 (2017). https://doi.org/10.1039/C7TA06971E

    Article  CAS  Google Scholar 

  24. W.P.R. Liyanage, M. Nath, CuInSe2 nanotube arrays for efficient solar energy conversion. Sci. Rep. 9, 16751 (2019). https://doi.org/10.1038/s41598-019-53228-9

    Article  CAS  Google Scholar 

  25. T. Wada, CuInSe2 and related I-III–VI2 chalcopyrite compounds for photovoltaic application. Jpn. J. Appl. Phys. 60, 080101 (2021). https://doi.org/10.35848/1347-4065/ac08ac

    Article  CAS  Google Scholar 

  26. Z. Duan, J. Ning, M. Chen, Y. Xiong, W. Yang, F. Xiao, S.V. Kershaw, N. Zhao, S. Xiao, A.L. Rogach, Broad-band photodetectors based on copper indium diselenide quantum dots in a methylammonium lead iodide perovskite matrix. ACS Appl. Mater. Interfaces 12, 35201–35210 (2020). https://doi.org/10.1021/acsami.0c06837

    Article  CAS  Google Scholar 

  27. O. Yarema, D. Bozyigit, I. Rousseau, L. Nowack, M. Yarema, W. Heiss, V. Wood, Highly luminescent, size- and shape-tunable copper indium selenide based colloidal nanocrystals. Chem. Mater. 25, 3753–3757 (2013). https://doi.org/10.1021/cm402306q

    Article  CAS  Google Scholar 

  28. S.M. Gasanly, A.A. Abdurragimov, Samedova UF (2012) The electric and thermoelectric properties of CuInSe2-based chalcopyrite. Surf. Eng. Appl. Electrochem. 48, 439–443 (2012). https://doi.org/10.3103/S1068375512050043

    Article  Google Scholar 

  29. S.R. Suryawanshi, P.K. Bankar, M.A. More, D.J. Late, Vapour–liquid–solid growth of one-dimensional In2Se3 nanostructures and their promising field emission behaviour. RSC Adv. 5, 65274–65282 (2015). https://doi.org/10.1039/C5RA10160C

    Article  CAS  Google Scholar 

  30. J.H. Park, M. Afzaal, M. Helliwell, M.A. Malik, P. O’Brien, J. Raftery, Chemical vapor deposition of indium selenide and gallium selenide thin films from mixed alkyl/dialkylselenophosphorylamides. Chem. Mater. 15, 4205–4210 (2003). https://doi.org/10.1021/cm0310420

    Article  CAS  Google Scholar 

  31. S. Zhou, X. Tao, Y. Gu, Thickness-dependent thermal conductivity of suspended two-dimensional single-crystal In2Se3 layers grown by chemical vapor deposition. J. Phys. Chem. C 120, 4753–4758 (2016). https://doi.org/10.1021/acs.jpcc.5b10905

    Article  CAS  Google Scholar 

  32. V.D. Botcha, Y. Hong, Z. Huang, Z. Li, Q. Liu, J. Wu, Y. Lu, X. Liu, Growth and thermal properties of various In2Se3 nanostructures prepared by single step PVD technique. J. Alloys Compd. 773, 698–705 (2019). https://doi.org/10.1016/j.jallcom.2018.09.335

    Article  CAS  Google Scholar 

  33. J.Y. Emery, L. Brahim-Ostmane, C. Hirlimann, A. Chevy, Reflection high-energy electron diffraction studies of InSe and GaSe layered compounds grown by molecular beam epitaxy. J. Appl. Phys. 71, 3256–3259 (1992). https://doi.org/10.1063/1.350972

    Article  CAS  Google Scholar 

  34. C. Julien, I. Samaras, M. Tsakiri, P. Dzwonkowski, M. Balkanski, Lithium insertion in InSe films and applications in microbatteries. Mater. Sci. Eng. B 3, 25–29 (1989). https://doi.org/10.1016/0921-5107(89)90174-8

    Article  Google Scholar 

  35. S.M. El-Sayed, Optical investigations of the indium selenide glasses. Vacuum 72, 69–175 (2003). https://doi.org/10.1016/S0042-207X(03)00139-8

    Article  CAS  Google Scholar 

  36. S.S. Ikari, Crystalline InSe films prepared by RF-sputtering technique. Jpn. J. Appl. Phys. 30, L2127 (1991)

    Article  Google Scholar 

  37. A.V. Saslonkin, Z.D. Kovalyuk, I.V. Mintjanskii, Neorganocheskie Mater. 43, 1415–1415 (2007)

    Google Scholar 

  38. Y. Li, T. Wang, H. Wang, Z. Li, Y. Chen, D. West, R. Sankar, R.K. Ulaganathan, F. Chou, C. Wetzel, C.Y. Xu, S. Zhang, A.F. Shi, Enhanced light emission from the ridge of two-dimensional InSe flakes. Nano Lett. 18, 5078–5084 (2018). https://doi.org/10.1021/acs.nanolett.8b01940

    Article  CAS  Google Scholar 

  39. S. Yang, C.Y. Xu, L. Yang, S.P. Hu, L. Zhen, Solution-phase synthesis of γ-In2Se3 nanoparticles for highly efficient photocatalytic hydrogen generation under simulated sunlight irradiation. RSC Adv. 6, 106671–106675 (2016). https://doi.org/10.1039/C6RA21784B

    Article  CAS  Google Scholar 

  40. S. Chen, X. Liu, X. Qiao, X. Wan, K. Shehzad, X. Zhang, Y. Xu, X. Fan, Facile synthesis of γ-In2Se3 nanoflowers toward high performance self-powered broadband γ-In2Se3/Si heterojunction photodiode. Small 13, 1604033 (2017). https://doi.org/10.1002/smll.201604033

    Article  CAS  Google Scholar 

  41. T. Li, J. Wang, J. Lai, X. Zheng, W. Liu, J. Ji, H. Liu, Z. Jin, Multi-morphological growth of nano-structured In2Se3 by ambient pressure triethylene glycol based solution syntheses. J. Alloys Compd. 646, 603–611 (2015). https://doi.org/10.1016/j.jallcom.2015.05.193

    Article  CAS  Google Scholar 

  42. A.M. Fernandez, M.E. Calixto, P.J. Sebastian, S.A. Gamboa, A.M. Hermann, R.N. Noufi, Electrodeposited and selenized (CuInSe2) (CIS) thin films for photovoltaic applications. Sol. Energy Mater. Sol. Cells 52, 423–431 (1998). https://doi.org/10.1016/S0927-0248(97)00240-7

    Article  CAS  Google Scholar 

  43. P.U. Londhe, A.B. Rohom, N.B. Chaure, CuInSe2 thin film solar cells prepared by low-cost electrodeposition techniques from a non-aqueous bath. RSC Adv. 5, 89635–89643 (2015). https://doi.org/10.1039/C5RA18315D

    Article  CAS  Google Scholar 

  44. M. Kar, H.W. Hillhouse, R. Agrawal, Chemical liquid deposition of CuInSe2 and CuIn(S, Se)2 films for solar cells. Thin Solid Films 520, 5431–5437 (2012). https://doi.org/10.1016/j.tsf.2012.04.012

    Article  CAS  Google Scholar 

  45. M.C. Artaud, F. Ouchen, L. Martin, S. Duchemin, CuInSe2 thin films grown by MOCVD: characterization, first devices. Thin Solid Films 324, 115–123 (1998). https://doi.org/10.1016/S0040-6090(98)00349-6

    Article  CAS  Google Scholar 

  46. M. Li, F. Chang, C. Li, C. Xia, T. Wang, J. Wang, M. Sun, CIS and CIGS thin films prepared by magnetron sputtering. Procedia Eng. 27, 12–19 (2012). https://doi.org/10.1016/j.proeng.2011.12.419

    Article  CAS  Google Scholar 

  47. S. Zott, K. Leo, M. Ruckh, H.-W. Schock, Photoluminescence of polycrystalline CuInSe2 thin films. Appl. Phys. Lett. 68, 1144–1146 (1996). https://doi.org/10.1063/1.115704

    Article  CAS  Google Scholar 

  48. C.-H. Wu, F.-S. Chen, S.-H. Lin, C.-H. Lu, Preparation and characterization of CuInSe2 particles via the hydrothermal route for thin-film solar cells. J. Alloys Compd. 509, 5783–5788 (2011). https://doi.org/10.1016/j.jallcom.2010.08.164

    Article  CAS  Google Scholar 

  49. H. Chen, S.-M. Yu, D.-W. Shin, J.-B. Yoo, Solvothermal synthesis and characterization of chalcopyrite CuInSe2 nanoparticles. Nanoscale Res. Lett. 5, 217–223 (2010). https://doi.org/10.1007/s11671-009-9468-6

    Article  CAS  Google Scholar 

  50. Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, H.H.W. Agrawal, Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. 8(9), 2982–2987 (2008). https://doi.org/10.1021/nl802042g

    Article  CAS  Google Scholar 

  51. B.A. Tappan, G. Barim, J.C. Kwok, R.L. Brutchey, Utilizing diselenide precursors toward rationally controlled synthesis of metastable CuInSe2 nanocrystals. Chem. Mater. 30(16), 5704–5713 (2018). https://doi.org/10.1021/acs.chemmater.8b02205

    Article  CAS  Google Scholar 

  52. G. Kedarnath, in Handbook on Synthesis Strategies for Advanced Materials, vol. 1, ed. by A.K. Tyagi, R.S. Ningthoujam (Springer, Singapore, 2021)

    Google Scholar 

  53. H.J. Gysling, A.A. Wernberg, T.N. Blanton, Molecular design of single-source precursors for 3–6 semiconductor films: control of phase and stoichiometry in indium selenide (InxSey) films deposited by a spray MOCVD process using single-source reagents. Chem. Mater. 4, 900–905 (1992). https://doi.org/10.1021/cm00022a028

    Article  CAS  Google Scholar 

  54. S.L. Stoll, A.R. Barron, Metal–organic chemical vapor deposition of indium selenide thin films. Chem. Mater. 10, 650–657 (1998). https://doi.org/10.1021/cm970638i

    Article  CAS  Google Scholar 

  55. I.H. Choi, H.J. Park, Pressure dependence of the photoluminescence from γ-In2Se3 thin films prepared using MOCVD with a single-source precursor. J. Korean Phys. Soc. 64, 1351–1355 (2014). https://doi.org/10.3938/jkps.64.1351

    Article  CAS  Google Scholar 

  56. J. Cheon, J. Arnold, K.-M. Yu, E.D. Bourret, Metalorganic chemical vapor deposition of semiconducting III/VI In2Se3 thin films from the single-source precursor: In [SeC (SiMe3)3]3. Chem. Mater. 7, 2273–2276 (1995)

    Article  CAS  Google Scholar 

  57. P. O’Brien, D.J. Otway, J.R. Walsh, The growth of indium selenide thin films from a novel asymmetric dialkyldiselenocarbamate of indium. Chem. Vap. Depos. 3, 227–229 (1997). https://doi.org/10.1002/cvde.19970030411

    Article  Google Scholar 

  58. N. Revaprasadu, M. Azad Malik, J. Carstens, P. O’Brien, Novel single-molecule precursor routes for the direct synthesis of InS and InSe quantum dots. J. Mater. Chem. 9, 2885–2888 (1999). https://doi.org/10.1039/A905578I

    Article  CAS  Google Scholar 

  59. S.N. Malik, S. Mahboob, N. Haider, M.A. Malik, Brien PO’ (2011) A colloidal synthesis of CuInSe2, CuGaSe2 and CuIn1−xGaxSe2 nanoparticles from diisopropyldiselenophosphinatometal precursors. Nanoscale 3, 5132–5139 (2011). https://doi.org/10.1039/C1NR10888C

    Article  CAS  Google Scholar 

  60. M.K. Pal, S. Dey, A.P. Wadawale, N. Kushwah, M. Kumar, V.K. Jain, Coordination polymers of indium/copper selenolates and the preparation of metal selenides. ChemistrySelect 3, 8575–8580 (2018). https://doi.org/10.1002/slct.201801617

    Article  CAS  Google Scholar 

  61. G. Kedarnath, V.K. Jain, Pyridyl and pyrimidyl chalcogen (Se and Te) compounds: a family of multi utility molecules. Coord. Chem. Rev 257, 1409–1435 (2013). https://doi.org/10.1016/j.ccr.2013.01.003

    Article  CAS  Google Scholar 

  62. R. Sharma, G. Kedarnath, V.K. Jain, A. Wadawale, C.G.S. Pillai, M. Nalliath, B. Vishwanadh, Copper(I) 2-pyridyl selenolates and tellurolates: synthesis, structures and their utility as molecular precursors for the preparation of copper chalcogenide nanocrystals and thin films. Dalton Trans. 40, 9194–9201 (2011). https://doi.org/10.1039/C1DT10461F

    Article  CAS  Google Scholar 

  63. R. Sharma, G. Kedarnath, A. Wadawale, C.A. Betty, B. Vishwanadh, V.K. Jain, Diorganotin(IV) 2-pyridyl selenolates: synthesis, structures and their utility as molecular precursors for the preparation of tin selenide nanocrystals and thin films. Dalton Trans. 41, 12129–12138 (2012). https://doi.org/10.1039/C2DT31197F

    Article  CAS  Google Scholar 

  64. R. Sharma, G. Kedarnath, N. Kushwah, M. Pal, A. Wadawale, B. Vishwanadh, B. Paul, V.K. Jain, Indium(III) (3-methyl-2-pyridyl)selenolate: synthesis, structure and its utility as a single source precursor for the preparation of In2Se3 nanocrystals and a dual source precursor with [Cu{SeC5H3(Me-3)N}]4 for the preparation of CuInSe2. J. Organomet. Chem. 747, 113–118 (2013). https://doi.org/10.1016/j.jorganchem.2013.04.034

    Article  CAS  Google Scholar 

  65. A. Tyagi, G. Kedarnath, A. Wadawale, A. Shah, V.K. Jain, B. Vishwandh, Diorganotin(IV) 4,6-dimethyl-2-pyrimidyl selenolates: synthesis, structures and their utility as molecular precursors for the preparation of SnSe2 nano-sheets and thin films. RSC Adv. 6, 8367–8376 (2016). https://doi.org/10.1039/C5RA20578F

    Article  CAS  Google Scholar 

  66. A. Tyagi, G. Karmakar, A. Wadawale, A.Y. Shah, G. Kedarnath, A.P. Srivastava, V. Singh, V.K. Jain, Facile one-pot synthesis of tin selenide nanostructures using diorganotin bis(5-methyl-2-pyridylselenolates). J. Organomet. Chem. 873, 15–21 (2018). https://doi.org/10.1016/j.jorganchem.2018.07.031

    Article  CAS  Google Scholar 

  67. A. Tyagi, A.Y. Shah, G. Kedarnath, A. Wadawale, V. Singh, D. Tyagi, C.A. Betty, C. Lal, V.K. Jain, Synthesis, characterization and photovoltaic properties of phase pure Cu2SnSe3 nanostructures using molecular precursors. J. Mater. Sci. Mater. Electron. 9, 8937–8946 (2018). https://doi.org/10.1007/s10854-018-8912-8

    Article  CAS  Google Scholar 

  68. G. Karmakar, A. Tyagi, A. Wadawale, G. Kedarnath, A.P. Srivastava, C.A. Betty, V. Singh, Synthesis, characterization and photo response behaviour of InSe and CuInSe2 nanostructures using tris(5-methyl-2-pyridylselenolato)indium(III) as molecular precursor. ChemistrySelect 3, 10394–10401 (2018). https://doi.org/10.1002/slct.201801653

    Article  CAS  Google Scholar 

  69. R.S. Chauhan, R.K. Sharma, G. Kedarnath, D.B. Cordes, A.M.Z. Slawin, V.K. Jain, Reactivity of dipyrimidyldiselenides with [M(PPh3)4] and 2-pyrimidylchalcogenolates with [MCl2(diphosphine)] (M = Pd or Pt). J. Organomet. Chem. 717, 180–186 (2012). https://doi.org/10.1016/j.jorganchem.2012.06.036

    Article  CAS  Google Scholar 

  70. A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. (1984). https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  71. J.-H. Park, T.-M. Chung, B.K. Park, C.G. Kim, Indium complexes with aminothiolate ligands as single precursors for indium chalcogenides. Inorg. Chim. Acta 505, 119504 (2020). https://doi.org/10.1016/j.ica.2020.119504

    Article  CAS  Google Scholar 

  72. G.G. Briand, A. Decken, N.S. Hamilton, Rationalizing oligomerization in dimethylindium(III) chalcogenolates (Me2InER′) (E = O, S, Se): a structural and computational study. Dalton Trans. 39, 3833–3841 (2010). https://doi.org/10.1039/B927128G

    Article  CAS  Google Scholar 

  73. Y. Cheng, T.J. Emge, J.G. Brennan, Pyridineselenolate complexes of copper and indium: precursors to CuSex and In2Se3. Inorg. Chem. 35, 7339–7344 (1996). https://doi.org/10.1021/ic9603969

    Article  CAS  Google Scholar 

  74. C. Paek, S.O. Kang, C.-H. Lee, Y.-H. Lee, J. Ko, Synthesis and characterization of new group 13 complexes of 2-acetylpyridine-S-methyldithiocarbazate. Single-crystal structure of Me2Ga[NC5H4C(CH3)NNC(S)SMe] and Me2In[NC5H5C(CH3)NNC(S)SMe]. Bull. Korean Chem. Soc. 18, 311–316 (1997)

    CAS  Google Scholar 

  75. H.-S. Sun, X.-M. Wang, Y.-J. Liu, X.-Y. Huang, X.-Z. You, Synthesis and characterization of an adduct of Me3In with 5, 6-benzoquinoline X-ray crystal structure of Me3In·(BQ)2 (BQ [dbnd] 5, 6 benzoquinoline). J. Coord. Chem. 39, 265–271 (1996). https://doi.org/10.1080/00958979608024334

    Article  CAS  Google Scholar 

  76. S. Campisi, M. Schiavoni, C.E. Chan-Thaw, A. Villa, Untangling the role of the capping agent in nanocatalysis: recent advances and perspectives. Catalysts 6, 185 (2016). https://doi.org/10.3390/catal6120185

    Article  CAS  Google Scholar 

  77. M.X. Wang, G.H. Yue, Y.D. Lin, X. Wen, D.L. Peng, Z.R. Geng, Synthesis, optical properties and photovoltaic application of the SnS quasi-one-dimensional nanostructures. Nano–Micro Lett. 5, 1–6 (2013). https://doi.org/10.3786/nml.v5i1.p1-6

    Article  CAS  Google Scholar 

  78. Y.I. Zhirko, V.M. Grekhov, Z.D. Kovalyuk, Characterization, optical properties and electron (exciton)–phonon interaction in bulk In2Se3 crystals and InSe nanocrystals in In2Se3 confinement. J. Nanomed. Nanosci. 3(3), 1–16 (2018). https://doi.org/10.29011/2577-1477.100048

    Article  Google Scholar 

  79. D. Wei, Z. Lin, Z. Cui, S. Su, D. Zhang, M. Cao, C. Hu, Two-step fabrication of a porous γ-In2Se3 tetragonal photocatalyst for water splitting. Chem. Commun. 49, 9609–9611 (2013). https://doi.org/10.1039/C3CC45598J

    Article  CAS  Google Scholar 

  80. S. Chichibu, Y. Mizutani, K. Murakami, T. Shioda, T. Kurafuji, H. Nakanishi, S. Niki, P.J. Fons, A. Yamada, Band gap energies of bulk, thin-film, and epitaxial layers of CuInSe2 and CuGaSe2. J. Appl. Phys. 83, 3678–3689 (1998). https://doi.org/10.1063/1.366588

    Article  CAS  Google Scholar 

  81. S. Ghoshal, N.P. Kushwah, D.P. Dutta, V.K. Jain, A convenient synthesis of methylindium(III) dithiolate complexes-precursors for indium sulfides. Appl. Organomet. Chem. 19, 1257–1262 (2005). https://doi.org/10.1002/aoc.981

    Article  CAS  Google Scholar 

  82. B. Philips-Invernizzi, D. Dupont, C. Cazé, Bibliographical review for reflectance of diffusing media. Opt. Eng. 40, 1082–1092 (2001). https://doi.org/10.1117/1.1370387

    Article  Google Scholar 

  83. T. Higashi, ABSCOR-empirical absorption correction based on Fourier Series approximation (Rigaku Corporation, Matsubara, Akishima, Japan, 1995)

  84. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori, M. Camalli, SIRPOW.92—a program for automatic solution of crystal structures by direct methods optimized for powder data. J. Appl. Crystallogr. 27, 435–436 (1994). https://doi.org/10.1107/S0021889894000221

    Article  Google Scholar 

  85. G.M. Sheldrick, A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008). https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  86. L.J. Farrugia, ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 30, 565 (1997). https://doi.org/10.1107/S0021889897003117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. A. K. Tyagi, Director, Chemistry Group, Bhabha Atomic Research Centre for encouragement of this work. We are grateful to Dr. N. Raje for providing thermogravimetric analyses data and Dr. Bal Govind Vats for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nisha Kushwah or G. Kedarnath.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwah, N., Kedarnath, G., Wadawale, A. et al. Synthesis and characterization of methyl indium 4,6-dimethyl-2-pyrimidyl selenolates and its utility for indium selenide, CuInSe2 nanostructures and indium selenide thin films. Journal of Materials Research 37, 1341–1356 (2022). https://doi.org/10.1557/s43578-022-00538-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00538-w

Keywords

Navigation