Skip to main content

Advertisement

Log in

The effect of using Al2O3 and TiO2 in sandblasting of titanium dental implants

  • Article
  • FOCUS ISSUE: Advances in Titanium Bio-Implants
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of Al2O3 with respect to TiO2 as abrasive for the osseointegration of dental implants has been questioned. The aim has been to clarify the advantages or disadvantages of mechanical and biological response. The implants studied were as-received with acid etching and sandblasted with TiO2 and with Al2Owith posterior acid etching. Roughness, microhardness, residual stresses and fatigue were determined. In vivo tests were realized in minipigs. The percentage of bone index contact (BIC) after 2 and 6 weeks of implantation was determined histometric evaluation. Results showed that the roughness of the Al2O3 treated implants was 2.54 respect to 0.80 μm for TiO2, microhardness were 370 and 241 HVN and compressive residual stresses of − 2450 and − 78.3 MPa, respectively. These compressive stresses justify the higher fatigue strength of the Al2O3 sandblasted samples. BIC values after 6 weeks were 63% compared to 38% for TiO2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. T. Albrektsson, P.I. BrånemarkI, H.A. Hansson, J. Lindström, Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop. 52, 155–170 (1981). https://doi.org/10.3109/17453678108991776

    Article  CAS  Google Scholar 

  2. A. Bagno, C. Di Bello, Surface treatments and roughness properties of Ti-based biomaterials. J. Mater. Sci. Mater. Med. 15, 935–949 (2004)

    Article  CAS  Google Scholar 

  3. L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844–854 (2007)

    Article  Google Scholar 

  4. C. Aparicio, D. Rodriguez, F.J. Gil, Variation of roughness and adhesion strength of deposited apatite layers on titanium dental implants. Mater. Sci. Eng. C 31(2), 320–324 (2011)

    Article  CAS  Google Scholar 

  5. Y.S. Al Jabbari, S. Zinelis, G. Eliades, Effect of sandblasting conditions on alumina retention in representative dental alloys. Dent. Mater. J. 31, 249–255 (2012). https://doi.org/10.4012/dmj.2011-210

    Article  CAS  Google Scholar 

  6. T. Nordin, J. Graf, A. Frykholm, L. Helldén, Early functional loading of sand-blasted and acid-etched (SLA) Straumann implants following immediate placement in maxillary extraction sockets. Clinical and radiographic result. Clin. Oral Implants Res. 18, 441–451 (2007). https://doi.org/10.1111/j.1600-0501.2007.01387.x

    Article  Google Scholar 

  7. D. Buser, R.K. Schenk, S. Steinemann, Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J. Biomed. Mater. Res. 25, 889–902 (1991). https://doi.org/10.1002/jbm.820250708

    Article  CAS  Google Scholar 

  8. R.G.T. Geesink, K. de Groot, C.P.A.T. Klein, Chemical implant fixation using hydroxyl-apatite coatings. Clin. Orthop. 225, 147–170 (1987)

    CAS  Google Scholar 

  9. G. Giavaresi, M. Fini, A. Cigada, R. Chiesa, R. Rondelli, L. Rimondini, P. Torricelli, N. Aldini, R. Giardino, Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials 24, 1583–1594 (2003)

    Article  CAS  Google Scholar 

  10. H. Schliephake, D. Scharnweber, Chemical and biological functionalization of titanium for dental implants. J. Mater. Chem. 18, 2404–2414 (2008). https://doi.org/10.1039/b715355b

    Article  CAS  Google Scholar 

  11. R. Fraioli, F. Rechenmacher, S. Neubauer, J.M. Manero, F.J. Gil, H. Kessler, C. Mas-Moruno, Mimicking bone extracellular matrix: integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium. Colloids Surf. B 128, 191–200 (2015). https://doi.org/10.1016/j.colsurfb.2014.12.057

    Article  CAS  Google Scholar 

  12. B.D. Boyan, C.H. Lohmann, D.D. Dean, V.L. Sylvia, D.L. Cochran, Z. Schwartz, Mechanisms involved in osteoblast response to implant surface morphology. Ann. Rev. Mater. Res. 31, 357–371 (2001)

    Article  CAS  Google Scholar 

  13. G. Giavaresi, M. Fini, A. Cigada, Histomorphometric and microhardness assessments of sheep cortical bone surrounding titanium implants with different surface treatments. J. Biomed. Mater. Res. 67A, 112–120 (2003). https://doi.org/10.1002/jbm.a.10044

    Article  CAS  Google Scholar 

  14. C. Aparicio, D. Rodriguez, F.J. Gil, Variation of roughness and adhesion strength of deposited apatite layers on titanium dental implants. Mater. Sci. Eng. C 31, 320–324 (2011)

    Article  CAS  Google Scholar 

  15. A. Fukuda, M. Takemoto, T. Saito, S. Fujibayashi, M. Neo, D.K. Pattanayak, K. Sasaki, N. Nishida, T. Kokubo, T. Nakamura, Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater. 7, 2327–2336 (2011)

    Article  CAS  Google Scholar 

  16. S. Ferraris, S. Spriano, G. Pan, A. Venturello, C.L. Bianchi, R. Chiesa et al., Surface modification of Ti-6Al-4V alloy for biomineralization and specific biological response: part I, inorganic modification. J. Mater. Sci. Mater. Med. 22, 533–545 (2011)

    Article  CAS  Google Scholar 

  17. S. Ferraris, F. Truffa Giachet, M. Miola, E. Bertone, A. Varesano, C. Vineis, Nanogrooves and keratin nanofibers on titanium surfaces aimed at driving gingival fibroblasts alignment and proliferation without increasing bacterial adhesion. Mater. Sci. Eng. 76, 1–12 (2017)

    Article  CAS  Google Scholar 

  18. H. Deppe, C. Wolff, F. Bauer, R. Ruthenberg, A. Sculean, T. Mücke, Dental implant surfaces after insertion in bone: an in vitro study in four commercial implant systems. Clin. Oral. Invest. 22, 1593–1600 (2017)

    Article  Google Scholar 

  19. C. Massaro, P. Rotolo, F. de Ricardis, E. Milella, A. Napoli, M. Wieland, Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. J. Mater. Sci. Mater. Med. 13, 535–548 (2002)

    Article  CAS  Google Scholar 

  20. F.J. Gil, E. Espinar, J.M. Llamas, P. Sevilla, Fatigue life of bioactive titanium dental implants treated by means of Grit Blasting and Thermo-Chemical treatment. Clin. Impl. Dent. Rel. Res. (2012). https://doi.org/10.1111/j.1708-8208.2012.00468.x

    Article  Google Scholar 

  21. L. Pazos, P. Corengia, H. Svoboda, Effect of surface treatments on the fatigue life of titanium for biomedical applications. J. Mech. Behav. Biomed. Mater. 3, 416–424 (2010). https://doi.org/10.1016/j.jmbbm.2010.03.006

    Article  CAS  Google Scholar 

  22. P. Schupbach, R. Glauser, S. Bauer, Al2O3 particles on titanium dental implant systems following sandblasting and acid-etching process. Int J Biomater. (2019). https://doi.org/10.1155/2019/6318429

    Article  Google Scholar 

  23. H.J. Rønold, S.P. Lyngstadaas, J.E. Ellingsen, A study on the effect of dual blasting with TiO2 on titanium implant surfaces on functional attachment in bone. J. Biomed. Mater. Res. 67, 524–530 (2003). https://doi.org/10.1002/jbm.a.10580

    Article  CAS  Google Scholar 

  24. D. Buser, Titanium for dental applications (II): implants with roughened surfaces, in Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications. ed. by D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen (Berlin, Springer, 2001), pp. 875–888

    Chapter  Google Scholar 

  25. C.H. Han, C.B. Johansson, A. Wennerberg, T. Albrektsson, Quantitative and qualitative investigations of surface enlarged titanium and titanium alloy implants. Clin. Oral Implants Res. 9, 1–10 (1998). https://doi.org/10.1034/j.1600-0501.1998.090101.x

    Article  CAS  Google Scholar 

  26. C. Aparicio, E. Engel, F.J. Gil, J.A. Planell, Human-osteoblast proliferation and differentiation on grit-blasted and bioactive titanium for dental applications. J. Mater. Sci. 13, 1105–1111 (2002)

    CAS  Google Scholar 

  27. K. Anselme, Osteoblast adhesion on biomaterials. Biomaterials 21, 667–681 (2000)

    Article  CAS  Google Scholar 

  28. J.Y. Martin, Z. Schwartz, T.W. Hummert, Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J. Biomed. Mater. Res. 29, 389–401 (1995). https://doi.org/10.1002/jbm.820290314

    Article  CAS  Google Scholar 

  29. B.D. Boyan, T.W. Hummert, D.D. Dean, Z. Schwartz, Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17, 137–146 (1996). https://doi.org/10.1016/0142-9612(96)85758-9

    Article  CAS  Google Scholar 

  30. F.J. Gil, E. Espinar, J.M. Llamas, P. Sevilla, Fatigue life of bioactive titanium dental implants treated by means of grit-blasting and thermo-chemical treatment. Clin. Implant Dent. Relat. Res. 16, 273–281 (2014). https://doi.org/10.1111/j.1708-8208.2012.00468.x

    Article  Google Scholar 

  31. F.J. Gil, J.A. Planell, A. Padrós, C. Aparicio, The effect of sand blasting and heat treatment on the fatigue behavior of titanium for dental implant applications. Dent. Mater. 23, 486–491 (2007). https://doi.org/10.1016/j.dental.2006.03.003

    Article  CAS  Google Scholar 

  32. K.H. Lau, A. Yoo, S.P. Wang, Aluminum stimulates the proliferation and differentiation of osteoblasts in vitro by a mechanism that is the different from fluorine. Mol. Cell. Biochem. 105, 93–105 (1991)

    CAS  Google Scholar 

  33. A. Wenneberg, T. Albrektsson, J. Lausmaa, Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25 and 75 mm sized particles of Al2O3. J. Biomed. Mater. Res. 30, 251–260 (1996)

    Article  Google Scholar 

  34. A. Piatelli, L. Manzon, A. Scarano, M. Paolantonio, M. Piatelli, Histologic and morphologic analysis of the bone response to machined and sandblasted titanium implants: an experimental study in rabbit. Int. J. Oral Maxillofac Implants 13, 805–810 (1998)

    Google Scholar 

  35. C.Y. Guo, J.P. Matinlinna, J.K.H. Tsoi, A.T.H. Tang, Residual contaminations of silicon-based glass, alumina an aluminum grits on a Titanium surface after sandblasting. SILICON 11, 2313–2320 (2019)

    Article  CAS  Google Scholar 

  36. A. Canabarro, M.G. Diniz, L. Paciornik, E.M. Sampaio, M.M. Beloti, A.L. Rosa, R.G. Fischer, High concentration of residual aluminum oxide on titanium surface inhibits extracellular matrix mineralization. J. Biomed. Mater. Res. 87A, 588–597 (2008)

    Article  CAS  Google Scholar 

  37. A. Piattelli, M. Degidi, M. Paolantonio, C. Mangano, A. Scarano, Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration. Biomaterials 24(22), 4081–4089 (2003)

    Article  CAS  Google Scholar 

  38. H.J. Ronold, J.E. Ellingsen, Effect of micro-roughness produced by TiO2 blasting-tensiles testing of bone attachment by using coin-shaped implants. Biomaterials 23, 4211–4219 (2002)

    Article  CAS  Google Scholar 

  39. S.A. Gehrke, M.P. Ramírez-Fernandez, J.M. Granero Marín, M. Barbosa Salles, M. Del Fabbro, J.L. Calvo Guirado, A comparative evaluation between aluminium and titanium dioxide microparticles for blasting the surface titanium dental implants: an experimental study in rabbits. Clin. Oral Implants Res. 29(7), 802–807 (2018). https://doi.org/10.1111/clr.12973.H

    Article  Google Scholar 

  40. G.B. Valverde, R. Jimbo, H.S. Teixeira, E.A. Bonfante, M.N. Janal, P.G. Coelho, Evaluation of Surface roughness as a function of múltiple blasting processing variables. Clin. Oral Implants Res. 24(2), 238–242 (2013)

    Article  Google Scholar 

  41. G.R.M. Matos, Surface roughness of dental implant and osseointegration. J. Maxillofac. Oral. Surg. 20, 1–4 (2021)

    Article  Google Scholar 

  42. G. Marenzi, G. Spagnuolo, J.C. Sammartino, R. Gasparro, A. Rebaudi, M. Salerno, Micro-scale surface pattering of titanium dental implants by anodization in the presence of modifying salts. Materials 30, 1753 (2019)

    Article  Google Scholar 

  43. E. Velasco-Ortega, I. Ortiz-García, A. Jiménez-Guerra, L. Monsalve-Guil, F. Munoz-Guzon, R.A. Perez, F.J. Gil, Comparison between sandblasted acid-etched and oxidized titanium dental implants: In vivo study. Int. J. Mol. Sci. 20, 3267 (2019)

    Article  CAS  Google Scholar 

  44. D. Labonte, A.K. Lenz, M.L. Oyen, On the relationship between indentation hardness and modulus, and the damage resistance of biological materials. Acta Biomater. 57, 373–383 (2017)

    Article  CAS  Google Scholar 

  45. B. Yin, J.L. Guo, J.Z. Wang, S. Li, Y.K. Liu, Y.Z. Zhang, Bone material properties of human phalanges using vickers indentation. Orthop. Surg. 11, 487–492 (2019)

    Article  Google Scholar 

  46. J. Samuel, D. Sinha, J.C.G. Zhao, X. Wang, Water residing in small ultrastructural spaces plays a critical role in the mechanical behavior of bone. Bone 59, 199–206 (2014)

    Article  CAS  Google Scholar 

  47. E. Velasco, L. Monsalve-Guil, A. Jimenez, I. Ortiz, J. Moreno-Muñoz, E. Nuñez-Marquez, M. Pegueroles, R. Perez, F.J. Gil, Importance of the roughness and residual stresses of dental implants on fatigue and osseointegration behavior. In vivo study in rabbits. J. Oral Inv. 42, 469–476 (2016)

    Google Scholar 

  48. F. Rupp, L. Liang, J. Geis-Gerstorfer, L. Scheideler, F. Huttig, Surface characteristics of dental implants: a review. Dent. Mater. 34, 40–57 (2018)

    Article  CAS  Google Scholar 

  49. E. Velasco-Ortega, A. Flichy-Fernández, M. Punset, A. Jiménez-Guerra, J.M. Manero, F.J. Gil, Fracture and fatigue of titanium narrow dental implants: new trends in order to improve the mechanical response. Materials 12(22), 3728 (2019)

    Article  CAS  Google Scholar 

  50. R.A. Pérez, J. Gargallo, P. Altuna, M. Herrero-Climent, F.J. Gil, Fatigue of narrow dental implants: influence of the hardening method. Materials 13, 1429 (2020)

    Article  Google Scholar 

Download references

Funding

This research was funded by Spanish Government and European Union FEDER by the concession of the grant RTI2018-098075-B-C22, the Spanish Government by the Ramón y Cajal Program (RYC2018-025977-I) and the research group Generalitat de Catalunya 2017SGR708.

Author information

Authors and Affiliations

Authors

Contributions

FJG, RAP and YO worked in the materials science aspects (roughness, microhardness, fatigue tests) and CH, JLG and DT-L in the clinical aspects (in vivo tests).

Corresponding author

Correspondence to F. J. Gil.

Ethics declarations

Conflict of interest

The authors have not any conflict of interest.

Ethical approval

Ethical Commission of the Faculty of Veterinary Sciences of the University of Cordoba (Spain). Reference SSA-SI-MD-ps 450/19640.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, F.J., Pérez, R.A., Olmos, J. et al. The effect of using Al2O3 and TiO2 in sandblasting of titanium dental implants. Journal of Materials Research 37, 2604–2613 (2022). https://doi.org/10.1557/s43578-022-00534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00534-0

Keywords

Navigation