Skip to main content

Advertisement

Log in

Surface Roughness of Dental Implant and Osseointegration

  • Review Paper
  • Published:
Journal of Maxillofacial and Oral Surgery Aims and scope Submit manuscript

Abstract

Introduction

Dental implants are a usual treatment for the loss of teeth. The success of this therapy is due to the predictability, safety and longevity of the bone–implant interface. Dental implant surface characteristics like roughness, chemical constitution, and mechanical factors can contribute to the early osseointegration. The aim of the present article is to perform a review of the literature on surface roughness of dental implant and osseointegration.

Methodology

This work is a narrative review of some aspects of surface roughness of dental implant and osseointegration.

Conclusion

Despite technological advancement in the biomaterials field, the ideal surface roughness for osseointegration still remains unclear. In this study about surface nanoroughness of dental implant and osseointegration, the clinical relevance is yet unknown. Innovative findings on nanoroughness are valuable in the fields of dental implantology, maxillofacial or orthopedic implant surfaces and also on cardiovascular implants in permanent contact with patient’s blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrektsson T, Wennerberg A (2019) On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res. 21:4–7

    Article  PubMed  Google Scholar 

  2. American Academy of Implant Dentistry (1986) Glossary of implant terms. J Oral Implantol 12:284–294

    Google Scholar 

  3. Albrektsson T, Zarb GA (1993) Current interpretations of the osseointegrated response: clinical significance. Int J Prosthodont 6:95–105

    CAS  PubMed  Google Scholar 

  4. Matos GRM, Godoy MF (2015) Factors associated with long-term stability of dental implants. Full Dent Sci 6:194–198

    Google Scholar 

  5. Chrcanovic BR, Albrektsson T, Wennerberg A (2014) Reasons for failures of oral implants. J Oral Rehabil 41:443–476

    Article  CAS  PubMed  Google Scholar 

  6. Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM (2014) Definition, etiology, prevention and treatment of peri-implantitis: a review. Head Face Med 10:34

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gómez-de Diego R, Mang-de la Rosa R, Romero-Pérez M-J, Cutando-Soriano A, López-Valverde-Centeno A (2014) Indications and contraindications of dental implants in medically compromised patients: update. Med Oral Patol Oral Cir Bucal 19:483–489

    Article  Google Scholar 

  8. Dohan EDM, Coelho PG, Kang BS, Sul YT, Albrektsson T (2010) Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 28:198–206

    Article  CAS  Google Scholar 

  9. Junker R, Dimakis A, Thoneick M, Jansen JA (2009) Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 20:185–206

    Article  PubMed  Google Scholar 

  10. Bagno A, Di Bello C (2004) Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci Mater Med 15:935–949

    Article  CAS  PubMed  Google Scholar 

  11. Hotchkiss KM, Sowers KT, Olivares-Navarrete R (2019) Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Mater 35:176–184

    Article  CAS  PubMed  Google Scholar 

  12. Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 20(Suppl. 4):172–184

    Article  PubMed  Google Scholar 

  13. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854

    Article  PubMed  CAS  Google Scholar 

  14. Ma Q-L, Zhao L-Z, Liu R-R et al (2014) Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 35:9853–9867

    Article  CAS  PubMed  Google Scholar 

  15. Zhao G, Schwartz Z, Wieland M et al (2005) High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 74:49–58

    Article  CAS  PubMed  Google Scholar 

  16. Berglundh T, Abrahamsson I, Albouy J-P, Lindhe J (2007) Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. Clin Oral Implants Res 18:147–152

    Article  CAS  PubMed  Google Scholar 

  17. Coelho PG, Jimbo R, Tovar N, Bonfante EA (2015) Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent Mater 31:37–52

    Article  PubMed  Google Scholar 

  18. Buser D, Janner SFM, Wittneben J-G, Brägger U, Ramseier CA, Salvi GE (2012) 10-Year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res. 14:839–851

    Article  PubMed  Google Scholar 

  19. Esposito M, Ardebili Y, Worthington HV (2014) Interventions for replacing missing teeth: different types of dental implants. Cochrane Database Syst Rev. 7:CD003815

    Google Scholar 

  20. Abraham CM (2014) A brief historical perspective on dental implants, their surface coatings and treatments. Open Dent J. 8(1):50–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rupp F, Scheideler L, Rehbein D, Axmann D, Geis-Gerstorfer J (2004) Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials 25:1429–1438

    Article  CAS  PubMed  Google Scholar 

  22. Wennerberg A, Albrektsson T, Chrcanovic B (2018) Long-term clinical outcome of implants with different surface modifications. Eur J Oral Implantol. 11(suppl 1):S123–S136

    PubMed  Google Scholar 

  23. Fischer K, Stenberg T (2012) Prospective 10-year cohort study based on a randomized controlled trial (RCT) on implant supported full-arch maxillary prostheses. Part 1: sandblasted and acid-etched implants and mucosal tissue. Clin Implant Dent Relat Res 14:808–815

    Article  PubMed  Google Scholar 

  24. Pachauri P, Bathala LR, Sangur R (2014) Techniques for dental implant nanosurface modifications. J Adv Prosthodont 6:498–504

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mendonça G, Mendonça DBS, Aragão FJL, Cooper LF (2008) Advancing dental implant surface technology: from micron- to nanotopography. Biomaterials 29:3822–3835

    Article  PubMed  CAS  Google Scholar 

  26. Wennerberg A, Galli S, Albrektsson T (2011) Current knowledge about the hydrophilic and nanostructured SLActive surface. Clin Cosmet Investig Dent 3:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dohan Ehrenfest DM, Vazquez L, Park Y-J, Sammartino G, Bernard J-P (2011) Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces. J Oral Implantol 37:525–542

    Article  PubMed  Google Scholar 

  28. Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739

    Article  CAS  PubMed  Google Scholar 

  29. Alghamdi HS (2018) Methods to improve osseointegration of dental implants in low quality (type-IV) bone: an overview. J Funct Biomater. 9:pii:E7

    Article  CAS  Google Scholar 

  30. Jemat A, Ghazali MJ, Razali M, Otsuka Y (2015) Surface modifications and their effects on titanium dental implants. Biomed Res Int 2015:791725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Elias CN, Meirelles LA (2010) Improving osseointegration of dental implants. Expert Rev Med Devices 7:241–256

    Article  PubMed  Google Scholar 

  32. Wennerberg A, Albrektsson T, Lindhe J (2003) Surface topography of titanium implants. Clin Periodontol Implant Dent 4:821–825

    Google Scholar 

  33. Elias CN, Rocha FA, Nascimento AL, Coelho PG (2012) Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. J Mech Behav Biomed Mater 16:169–180

    Article  PubMed  Google Scholar 

  34. Andrukhov O, Huber R, Shi B et al (2016) Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent Mater 32:1374–1384

    Article  CAS  PubMed  Google Scholar 

  35. Chrcanovic BR, Albrektsson T, Wennerberg A (2016) Turned versus anodised dental implants: a meta-analysis. J Oral Maxillofac Surg 74:1949–1964

    Article  PubMed  Google Scholar 

  36. Siegel RW, Fougere GE (1995) Mechanical properties of nanophase metals. Nanostruct Mater 6:205–216

    Article  CAS  Google Scholar 

  37. Song Y, Ju Y, Morita Y, Song G (2013) Effect of the nanostructure of porous alumina on growth behavior of MG63 osteoblast-like cells. J Biosci Bioeng 116:509–515

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Wang L, Fan Y, Feng Q, Cui FZ, Watari F (2013) Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A. 101:2424–2435

    Article  PubMed  CAS  Google Scholar 

  39. Wennerberg A, Svanborg Melin L, Berner S, Andersson M (2013) Spontaneously formed nanostructures on titanium surfaces. Clin Oral Implants Res. 24:203–209

    Article  PubMed  Google Scholar 

  40. Jindal S, Bansal R, Singh BP et al (2014) Enhanced osteoblast proliferation and corrosion resistance of commercially pure titanium through surface nanostructuring by ultrasonic shot peening and stress relieving. J Oral Implantol. 40 Spec No:347–355

    Article  PubMed  Google Scholar 

  41. Wennerberg A, Jimbo R, Stübinger S, Obrecht M, Dard M, Berner S (2014) Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Impl Res 25:1041–1050

    Article  Google Scholar 

  42. Traini T, Murmura G, Sinjari B et al (2018) The surface anodization of titanium dental implants improves blood clot formation followed by osseointegration. Coatings 8:252

    Article  CAS  Google Scholar 

  43. Subramani K, Lavenus S, Rozé J, Louarn G, Layrolle P (2018) Impact of nanotechnology on dental implants. In: Subramani K, Ahmed W (eds) Emerging nanotechnologies in dentistry, 2nd edn. Elsevier, New York, pp 71–83

    Google Scholar 

  44. Yazdani J, Ahmadian E, Sharifi S, Shahi S, Maleki Dizaj S (2018) A short view on nanohydroxyapatite as coating of dental implants. Biomed Pharmacother 105:553–557

    Article  CAS  PubMed  Google Scholar 

  45. Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F (2018) Surface characteristics of dental implants: a review. Dent Mater 34:40–57

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr. Ann Wennerberg at the Department of Prosthodontics, University of Gothenburg, Sweden, for their priceless attention, criticism and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldo Roberto Martins Matos.

Ethics declarations

Conflict of interest

Dr. Geraldo Roberto Martins Matos declare that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matos, G.R.M. Surface Roughness of Dental Implant and Osseointegration. J. Maxillofac. Oral Surg. 20, 1–4 (2021). https://doi.org/10.1007/s12663-020-01437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12663-020-01437-5

Keywords

Navigation