Skip to main content
Log in

Ultrathin-ZrO2-coated LiNi0.4Co0.2Mn0.4O2 cathode material for Li-ion batteries: Synthesis and electrochemical performance

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ZrO2-coated LiNi0.4Co0.2Mn0.4O2 with significantly improved electrochemical performance was successfully synthesized by molten salt method. The ZrO2-coated cathode material exhibited a significantly improved cycle performance and the rate performance. The 0.5 wt% ZrO2 coating material showed an excellently electrochemical cycleability and a high rate capability in the voltage range of 2.5–4.6 V. The capacity retention of 0.5 wt% ZrO2 coating material was 89.86% after 100 cycles at 0.5 C rate, which was much higher than that of raw material (82.02%). The discharge specific capacity was 106.13 mAh·g−1 after once activation at 0.1 C and 10 charge–discharge cycles at 5 C, which was much higher than that of raw material (81.71 mAh·g−1). The charge transfer impedance of coated material at high cut off voltage (4.6 V), as indicated by EIS results, was effectively suppressed, which precisely explained the distinct improvement of electrochemical performances.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

We declare that all data generated or analysed during this study are included in this published article [and its supplementary information files]. And the datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Zubi, R. Dufo-Lopez, M. Carvalho, G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives. Renew. Sust. Energ. Rev. 89, 292–308 (2018). https://doi.org/10.1016/j.rser.2018.03.002

    Article  Google Scholar 

  2. E. Nakamura, A. Kondo, M. Matsuoka, T. Kozawa, M. Naito, H. Koga, H. Iba, Preparation of LiCoO2/Li1.3Al0.3Ti1.7(PO4)(3) composite cathode granule for all-solid-state lithium-ion batteries by simple mechanical method, Adv. Powder Technol., 27 (2016) 825–829. https://doi.org/10.1016/j.apt.2015.10.013

  3. C.S. Yoon, D.W. Jun, S.T. Myung, Y.K. Sun, Structural Stability of LiNiO2 Cycled above 4.2 V, ACS Energy Lett., 2 (2017) 1150–115. https://doi.org/10.1021/acsenergylett.7b00304

  4. L.Q. Mu, X. Feng, R.H. Kou, Y. Zhang, H. Guo, C.X. Tian, C.J. Sun, X.W. Du, D. Nordlund, H.L.L. Xin, F. Lin, Deciphering the Cathode-Electrolyte Interfacial Chemistry in Sodium Layered Cathode Materials. Adv. Energy Mater. 8, 12 (2018). https://doi.org/10.1002/aenm.201801975

    Article  CAS  Google Scholar 

  5. D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, Y. Cui, Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes. Nano Lett. 8, 3948–3952 (2008). https://doi.org/10.1021/nl8024328

    Article  CAS  Google Scholar 

  6. T. Nakamura, Y. Miwa, M. Tabuchi, Y. Yamada, Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties, J. Electrochem. Soc., 153 (2006) A1108-A1114. https://doi.org/10.1149/1.2192732

  7. Z.L. Liu, A.S. Yu, J.Y. Lee, Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries. J. Power Sources 81, 416–419 (1999). https://doi.org/10.1016/S0378-7753(99)00221-9

    Article  Google Scholar 

  8. Z.H. Lu, D.D. MacNeil, J.R. Dahn, Layered Li NixCo1-2xMnx O-2 cathode materials for lithium-ion batteries. Electrochem. Solid State Lett. 4, A200–A203 (2001). https://doi.org/10.1149/1.1413182

    Article  CAS  Google Scholar 

  9. H.B. Rong, M.Q. Xu, B.Y. Xie, W.Z. Huang, X.L. Liao, L.D. Xing, W.S. Li, Performance improvement of graphite/LiNi0.4Co0.2Mn0.4O2 battery at high voltage with added Tris (trimethylsilyl) phosphate, J. Power Sources, 274 (2015) 1155–1161. https://doi.org/10.1016/j.jpowsour.2014.10.123

  10. J. Li, J.M. Zheng, Y. Yang, Studies on storage characteristics of LiNi0.4Co0.2Mn0.4O2 as cathode materials in lithium-ion batteries, J. Electrochem. Soc., 154 (2007) A427-A432. https://doi.org/10.1149/1.2711068

  11. Z. Chen, G.T. Kim, D. Bresser, T. Diemant, J. Asenbauer, S. Jeong, M. Copley, R.J. Behm, J. Lin, Z.X. Shen, S. Passerini, MnPO4-Coated Li(Ni0.4Co0.2Mn0.4)O-2 for Lithium(-Ion) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics, Adv. Energy Mater., 8 (2018) 13. https://doi.org/10.1002/aenm.201801573

  12. Q.C. Chen, G.J. Yan, L.M. Luo, F. Chen, T.F. Xie, S.C. Dai, M.L. Yuan, Enhanced cycling stability of Mg-F co-modified LiNi0.6Co0.2Mn0.2-yMgyO2-zFz for lithium-ion batteries, Trans. Nonferrous Met. Soc. China, 28 (2018) 1397–1403. https://doi.org/10.1016/S1003-6326(18)64778-8

  13. Q.Y. Chen, C.Q. Du, D.Y. Qu, X.H. Zhang, Z.Y. Tang, Synthesis and characterization of Zr-doped LiNi0.4Co0.2Mn0.4O2 cathode materials for lithium ion batteries, RSC Adv., 5 (2015) 75248–75253. https://doi.org/10.1039/C5RA14376D

  14. C.J. Lv, Y. Peng, J. Yang, X.C. Duan, J.M. Ma, T.H. Wang, Electrospun Nb-doped LiNi0.4Co0.2Mn0.4O2 nanobelts for lithium-ion batteries, Inorg. Chem. Front., 5 (2018) 1126–1132. https://doi.org/10.1039/C7QI00811B

  15. G. Kobayashi, Y. Irii, F. Matsumoto, A. Ito, Y. Ohsawa, S. Yamamoto, Y.T. Cui, J.Y. Son, Y.C. Sato, Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling. J. Power Sources 303, 250–256 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.014

    Article  CAS  Google Scholar 

  16. S.C. Dai, M.L. Yuan, L. Wang, L.M. Luo, Q.C. Chen, T.F. Xie, Y.P. Li, Y.T. Yang, Ultrathin-Y2O3-coated LiNi0.8Co0.1Mn0.1O2 as cathode materials for Li-ion batteries: Synthesis, performance and reversibility, Ceram. Int., 45 (2019) 674–680. https://doi.org/10.1016/j.ceramint.2018.09.227

  17. Q.C. Chen, L.M. Luo, L. Wang, T.F. Xie, S.C. Dai, Y.T. Yang, Y.P. Li, M.L. Yuan, Enhanced electrochemical properties of Y2O3-coated-(lithium-manganese)-rich layered oxides as cathode materials for use in lithium-ion batteries. J. Alloy. Compd. 735, 1778–1786 (2018). https://doi.org/10.1016/j.jallcom.2017.11.362

    Article  CAS  Google Scholar 

  18. M.R. Laskar, D.H.K. Jackson, S.Z. Xu, R.J. Hamers, D. Morgan, T.F. Kuech, Atomic Layer Deposited MgO: A Lower Overpotential Coating for Li Ni0.5Mn0.3Co0.2 O-2 Cathode, ACS Appl. Mater. Interfaces, 9 (2017) 11231–11239. https://doi.org/10.1021/acsami.6b16562

  19. J.Z. Kong, C. Ren, G.A. Tai, X. Zhang, A.D. Li, D. Wu, H. Li, F. Zhou, Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material, J. Power Sources, 266 (2014) 433–439. https://doi.org/10.1016/j.jpowsour.2014.05.027

  20. G.M. Song, Y. Wu, G. Liu, Q. Xu, Influence of AlF3 coating on the electrochemical properties of LiFePO4/graphite Li-ion batteries. J. Alloy. Compd. 487, 214–217 (2009). https://doi.org/10.1016/j.jallcom.2009.06.153

    Article  CAS  Google Scholar 

  21. F. Wu, X.X. Zhang, T.L. Zhao, L. Li, M. Xie, R.J. Chen, Multifunctional AlPO4 Coating for Improving Electrochemical Properties of Low-Cost Li Li0.2Fe0.1Ni0.15Mn0.55 O-2 Cathode Materials for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 7 (2015) 3773–3781. https://doi.org/10.1021/am508579r

  22. S.K. Hu, G.H. Cheng, M.Y. Cheng, B.J. Hwang, R. Santhanam, Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J. Power Sources 188, 564–569 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.113

    Article  CAS  Google Scholar 

  23. J.Z. Kong, S.S. Wang, G.A. Tai, L. Zhu, L.G. Wang, H.F. Zhai, D. Wu, A.D. Li, H. Li, Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by ultrathin ZrO2 coating, J. Alloy. Compd., 657 (2016) 593–600. https://doi.org/10.1016/j.jallcom.2015.10.187

  24. Z.Y. Wang, E.Z. Liu, L.C. Guo, C.S. Shi, C.N. He, J.J. Li, N.Q. Zhao, Cycle performance improvement of Li-rich layered cathode material Li Li0.2Mn0.54Ni0.13Co0.13 O-2 by ZrO2 coating, Surf. Coat. Technol., 235 (2013) 570–576. https://doi.org/10.1016/j.surfcoat.2013.08.026

  25. S.T. Myung, K. Izumi, S. Komaba, H. Yashiro, H.J. Bang, Y.K. Sun, N. Kumagai, Functionality of oxide coating for Li Li0.05Ni0.4Co0.15Mn0.4 O-2 as positive electrode materials for lithium-ion secondary batteries, J. Phys. Chem. C, 111 (2007) 4061–4067. https://doi.org/10.1021/jp0674367

  26. K.M. Shaju, G.V.S. Rao, B.V.R. Chowdari, Performance of layered Li(Ni1/3Co1/3Mn1/3)O-2 as cathode for Li-ion batteries. Electrochim. Acta 48, 145–151 (2002). https://doi.org/10.1016/S0013-4686(02)00593-5

    Article  CAS  Google Scholar 

  27. Z.C. Liu, H.H. Zhen, Y. Kim, C.D. Liang, Synthesis of LiNiO(2) cathode materials with homogeneous Al doping at the atomic level. J. Power Sources 196, 10201–10206 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.059

    Article  CAS  Google Scholar 

  28. S.N. Kwon, M.Y. Song, H.R. Park, Electrochemical properties of LiNiO2 substituted by Al or Ti for Ni via the combustion method. Ceram. Int. 40, 14141–14147 (2014). https://doi.org/10.1016/j.ceramint.2014.05.149

    Article  CAS  Google Scholar 

  29. J.G. Li, L. Wang, Q. Zhang, X.M. He, Electrochemical performance of SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J. Power Sources 190, 149–153 (2009). https://doi.org/10.1016/j.jpowsour.2008.08.011

    Article  CAS  Google Scholar 

  30. S.J. Shi, Y.J. Mai, Y.Y. Tang, C.D. Cu, X.L. Wang, J.P. Tu, Preparation and electrochemical performance of ball-like LiMn0.4Ni0.4Co0.2O2 cathode materials, Electrochim. Acta, 77 (2012) 39–46. https://doi.org/10.1016/j.electacta.2012.05.110

  31. J.M. Zheng, D.R. Zhu, Y. Yang, Y.S. Fung, The effects of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide-based electrolyte on the electrochemical performance of high capacity cathode material Li Li0.2Mn0.54Ni0.13Co0.13 O-2, Electrochim. Acta, 59 (2012) 14–22. https://doi.org/10.1016/j.electacta.2011.09.069

  32. R. Guo, P.F. Shi, X.Q. Cheng, L. Sun (2009) Effect of ZnO modification on the performance of LiNi0.5Co0.25Mn0.25O2 cathode material. Electrochim. Acta 54: 5796–5803. https://doi.org/10.1016/j.electacta.2009.05.034

Download references

Acknowledgments

This work was supported by the Major Science and Technology Research of Guangxi Department of Funded Projects (Grant No. 1114022-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingliang Yuan.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yuan, M., Xie, T. et al. Ultrathin-ZrO2-coated LiNi0.4Co0.2Mn0.4O2 cathode material for Li-ion batteries: Synthesis and electrochemical performance. Journal of Materials Research 37, 1019–1029 (2022). https://doi.org/10.1557/s43578-022-00511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00511-7

Keywords

Navigation