Skip to main content
Log in

Towards high-performance cathode materials for lithium-ion batteries: Al2O3-coated LiNi0.8Co0.15Zn0.05O2

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Zn-doped LiNi0.8Co0.2O2 exhibits impressive electrochemical performance but suffers limited cycling stability due to the relative large size of irregular and bare particle which is prepared by conventional solid-state method usually requiring high calcination temperature and prolonged calcination time. Here, submicron LiNi0.8Co0.15Zn0.05O2 as cathode material for lithium-ion batteries is synthesized by a facile sol-gel method, which followed by coating Al2O3 layer of about 15 nm to enhance its electrochemistry performance. The as-prepared Al2O3-coated LiNi0.8Co0.15Zn0.05O2 cathode delivers a highly reversible capacity of 182 mA h g−1 and 94% capacity retention after 100 cycles at a current rate of 0.5 C, which is much superior to that of bare LiNi0.8Co0.15Zn0.05O2 cathode. The enhanced electrochemistry performance can be attributed to the Al2O3-coated protective layer, which prevents the direct contact between the LiNi0.8Co0.15Zn0.05O2 and electrolyte. The escalating trend of Li-ion diffusion coefficient estimated form electrochemical impedance spectroscopic (EIS) also indicate the enhanced structural stability of Al2O3-coated LiNi0.8Co0.15Zn0.05O2, which rationally illuminates the protection mechanism of the Al2O3-coated layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Souza DCS, Pralong V, Jacobson AJ, Nazar LF (2002) A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science 296(5575):2012–2015. https://doi.org/10.1126/science.1071079

    Article  CAS  PubMed  Google Scholar 

  3. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  4. D Bresser, E Paillard, S Passerini (2015) Advances in batteries for medium and large-scale energy storage. Woodhead Publishing: 213–289

  5. Opra DP, Gnedenkov SV, Sinebryukhov SL, Voit EI, Sokolov AA, Modin EB, Podgorbunsky AB, Sushkov YV, Zheleznov VV (2017) Characterization and electrochemical properties of nanostructured Zr-doped Anatase TiO2 tubes synthesized by sol-gel template route. J Mater Sci Technol 33(6):527–534. https://doi.org/10.1016/j.jmst.2016.11.011

    Article  Google Scholar 

  6. Yu XX, Yin H, Li HX, Zhang W, Zhao H, Li C, Zhu MQ (2017) Piezo-phototronic effect modulated self-powered UV/visible/near-infrared photodetectors based on CdS:P3HT microwires. Nano Energy 34:155–163. https://doi.org/10.1016/j.nanoen.2017.02.033

    Article  CAS  Google Scholar 

  7. Venkatachalapathy R, Lee CW, Lu WQ, Prakash J (2000) Thermal investigations of transitional metal oxide cathodes in Li-ion cells. Electrochem Commun 2(2):104–107. https://doi.org/10.1016/S1388-2481(99)00151-4

    Article  CAS  Google Scholar 

  8. Wu SH, Yang CW (2005) Preparation of LiNi0.8CO0.2O2-based cathode materials for lithium batteries by a co-precipitation method. J Power Sources 146(1-2):270–274. https://doi.org/10.1016/j.jpowsour.2005.03.027

    Article  CAS  Google Scholar 

  9. Jouybari YH, Asgari S (2011) Synthesis and electrochemical properties of LiNi0.8Co0.2O2 nanopowders for lithium ion battery applications. J Power Sources 196(1):337–342. https://doi.org/10.1016/j.jpowsour.2010.06.097

    Article  CAS  Google Scholar 

  10. Ha HW, Jeong KH, Yun NJ, Hong MZ, Kim K (2005) Effects of surface modification on the cycling stability of LiNi0.8Co0.2O2 electrodes by CeO2 coating. Electrochim Acta 50(18):3764–3769. https://doi.org/10.1016/j.electacta.2005.01.022

    Article  CAS  Google Scholar 

  11. Tan KS, Reddy MV, Rao GV, Chowdari BVR (2005) Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8CO0.2)O2. J Power Sources 141(1):129–142. https://doi.org/10.1016/j.jpowsour.2004.08.044

    Article  CAS  Google Scholar 

  12. Oh SH, Lee SM, Cho WI, Cho BW (2006) Electrochemical characterization of zirconium-doped LiNi0.8Co0.2O2 cathode materials and investigations on deterioration mechanism. Electrochim Acta 51(18):3637–3644. https://doi.org/10.1016/j.electacta.2005.10.023

    Article  CAS  Google Scholar 

  13. Sivaprakash S, Majumder SB, Nieto S, Katiyar RS (2007) Crystal chemistry modification of lithium nickel cobalt oxide cathodes for lithium ion rechargeable batteries. J Power Sources 170(2):433–440. https://doi.org/10.1016/j.jpowsour.2007.04.029

    Article  CAS  Google Scholar 

  14. Song SW, Zhuang GV, Ross PN (2004) Surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes using attenuated total reflection IR spectroscopy. J Electrochem Soc 151(8):A1162–A1167. https://doi.org/10.1149/1.1763771

    Article  CAS  Google Scholar 

  15. Liu HS, Zhang ZR, Gong ZL, Yang Y (2004) A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating. Solid State Ionics 166(3-4):317–325. https://doi.org/10.1016/j.ssi.2003.11.010

    Article  CAS  Google Scholar 

  16. Wang C, Ma X, Cheng J, Zhou L, Sun J, Zhou Y (2006) Effects of Ca doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. Solid State Ionics 177(11-12):1027–1031. https://doi.org/10.1016/j.ssi.2006.03.030

    Article  CAS  Google Scholar 

  17. Xiang J, Chang C, Zhang F, Sun J (2009) Effects of Mg doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. J Alloy Compd 475(1-2):483–487. https://doi.org/10.1016/j.jallcom.2008.07.099

    Article  CAS  Google Scholar 

  18. Lee SW, Kim H, Kim MS, Youn HC, Kang K, Cho BW, Roh KC, Kim KB (2016) Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J Power Sources 315:261–268. https://doi.org/10.1016/j.jpowsour.2016.03.020

    Article  CAS  Google Scholar 

  19. Fey GTK, Chen JG, Subramanian V, Osaka T (2002) Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2. J Power Sources 112(2):384–394. https://doi.org/10.1016/S0378-7753(02)00400-7

    Article  CAS  Google Scholar 

  20. Zhecheva E, Stoyanova R, Tyuliev G, Tenchev K, Mladenov M, Vassilev S (2003) Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO. Solid State Sci 5(5):711–720. https://doi.org/10.1016/S1293-2558(03)00096-7

    Article  CAS  Google Scholar 

  21. Zhang ZR, Liu HS, Gong ZL, Yang Y (2004) Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8CO0.2O2 cathode materials. J Power Sources 129(1):101–106. https://doi.org/10.1016/j.jpowsour.2003.11.015

    Article  CAS  Google Scholar 

  22. Suresh P, Shukla AK, Munichandraiah N (2005) Capacity stabilization of layered Li0.9Mn0.9Ni0.1O2 cathode material by employing ZnO coating. Mater Lett 59(8-9):953–958. https://doi.org/10.1016/j.matlet.2004.10.072

    Article  CAS  Google Scholar 

  23. Xiang J, Chang C, Yuan L, Sun J (2008) A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery. Electrochem Commun 10(9):1360–1363. https://doi.org/10.1016/j.elecom.2008.07.012

    Article  CAS  Google Scholar 

  24. Huang Y, Chen J, Ni J, Zhou H, Zhang X (2009) A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. J Power Sources 188:538–545

    Article  CAS  Google Scholar 

  25. Huang ZD, Liu XM, Oh SW, Zhang B, Ma PC, Kim JK (2011) Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Mater Chem 21(29):10777–10784. https://doi.org/10.1039/c1jm00059d

    Article  CAS  Google Scholar 

  26. Yin H, Cao M, Yu X, Zhao H, Shen Y, Li C, Zhu M (2017) Self-standing Bi2O3 nanoparticles carbon/nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater Chem Front 1(8):1615–1621. https://doi.org/10.1039/C7QM00128B

    Article  CAS  Google Scholar 

  27. Yin H, Yu XX, Li QW, Cao ML, Zhang W, Zhao H, Zhu MQ (2017) Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J Alloy Compd 706:97–102. https://doi.org/10.1016/j.jallcom.2017.02.215

    Article  CAS  Google Scholar 

  28. Han CJ, Yoon JH, Cho W, Jang H (2004) Electrochemical properties of LiNi0.8Co0.2-xAlxO2 prepared by a sol-gel method. J Power Sources 136(1):132–138. https://doi.org/10.1016/j.jpowsour.2004.05.006

    Article  CAS  Google Scholar 

  29. Gao N, Gu F, Gu D (2006) Influences of preparation and physical characters of LiNi0.78Co0.2Zn0.02O2 on its electrochemical properties. J Harbin Inst Technol 38:1606–1612

    Google Scholar 

  30. Yuan R, Qu M, Yu Z (2003) Synthesis and electrochemical performance study of LixNi0.8-yCo0.2ZnyOp. J Inorg Chem 19:423–427

    CAS  Google Scholar 

  31. Yin H, Li Q, Cao M, Zhang W, Zhao H, Li C, Huo K, Zhu M (2017) Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res 10(6):2156–2167. https://doi.org/10.1007/s12274-016-1408-z

    Article  CAS  Google Scholar 

  32. Yin H, Cao ML, Yu XX, Li C, Shen Y, Zhu MQ (2017) Hierarchical CuBi2O4 microspheres as lithium-ion battery anodes with superior high-temperature electrochemical performance. RSC Adv 7(22):13250–13256. https://doi.org/10.1039/C6RA27216A

    Article  CAS  Google Scholar 

  33. Zhao Y, Peng LLB, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett 14(5):2849–2853. https://doi.org/10.1021/nl5008568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Analytical and Testing Center of Huazhong University of Science and Technology and the Center of Micro-Fabrication and Characterization (CMFC) of WNLO for use of their facilities.

Funding

This work was supported by the NSFC (51673077, 21474034, 51603078), National Basic Research Program of China (Grant no. 2015CB755602 and 2013CB922104) and the Fundamental Research Funds for the Central Universities (HUST: 2016YXMS029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Li or Ming-Qiang Zhu.

Electronic supplementary material

ESM 1

(DOC 2456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Yu, XX., Zhao, H. et al. Towards high-performance cathode materials for lithium-ion batteries: Al2O3-coated LiNi0.8Co0.15Zn0.05O2. J Solid State Electrochem 22, 2395–2403 (2018). https://doi.org/10.1007/s10008-018-3904-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3904-4

Keywords

Navigation