Skip to main content
Log in

Polylactide microparticles stabilized by chitosan graft-copolymer as building blocks for scaffold fabrication via surface-selective laser sintering

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Surface-selective laser sintering (SSLS) is a specific version of selective laser sintering, which allows one to fabricate 3D structures with well-defined architectonic via selective melting of microparticle surface without alteration of their core. This mode of laser sintering requires a well-designed surface properties of the microparticles to adsorb laser irradiation. Water was chosen as safer sensitive absorber of laser radiation with a wavelength of 1.9 μm, i.e. one with low absorption coefficient by polymeric core. Biodegradable polylactide microparticles were fabricated via oil/water emulsion solvent evaporation technique using tailored-made chitosan-based macromolecules, which provided the effective interface stabilization during the microparticle fabrication and well balanced microparticle surface hydrophilicity to adsorb water. Especially build SSLS set-up was designed in order to monitor the effectiveness of the 3D scaffold fabrication from the obtained microparticles and to adapt the optimal laser radiation parameters with a wavelength of 1.9 μm (e.g. speed, line density, power).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Code availability

Not applicable.

References

  1. T. Jiang, S.P. Nukavarapu, M. Deng, E. Jabbarzadeh, M.D. Kofron, S.B. Doty, W.I. Abdel-Fattah, C.T. Laurencin, Chitosan–poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomater. 6, 3457–3470 (2010). https://doi.org/10.1016/j.actbio.2010.03.023

    Article  CAS  Google Scholar 

  2. L. Du, S. Yang, W. Li, H. Li, S. Feng, R. Zeng, B. Yu, L. Xiao, H.-Y. Nie, M. Tu, Scaffold composed of porous vancomycin-loaded poly(lactide-co-glycolide) microspheres: a controlled-release drug delivery system with shape-memory effect. Mater. Sci. Eng., C 78, 1172–1178 (2017). https://doi.org/10.1016/j.msec.2017.04.099

    Article  CAS  Google Scholar 

  3. S. Yuan, F. Shen, C.K. Chua, K. Zhou, Polymeric composites for powder-based additive manufacturing: materials and applications. Prog. Polym. Sci. 91, 141–168 (2019). https://doi.org/10.1016/j.progpolymsci.2018.11.001

    Article  CAS  Google Scholar 

  4. H. Lee, C.H.J. Lim, M.J. Low, N. Tham, V.M. Murukeshan, Y.J. Kim, Lasers in additive manufacturing: a review. Int. J. Precision Eng. Manuf. 4, 307–322 (2017). https://doi.org/10.1007/s40684-017-0037-7

    Article  Google Scholar 

  5. E.N. Antonov, V.N. Bagratashvili, M.J. Whitaker, J.J.A.A. Barry, K.M. Shakesheff, A.N. Konovalov, V.K. Popov, S.M. Howdle, Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Adv. Mater. 17, 327–330 (2005). https://doi.org/10.1002/adma.200400838

    Article  CAS  Google Scholar 

  6. J.M. Kanczler, S.-H. Mirmalek-Sani, N.A. Hanley, A.L. Ivanov, J.J.A. Barry, C. Upton, K.M. Shakesheff, S.M. Howdle, E.N. Antonov, V.N. Bagratashvili, V.K. Popov, R.O.C. Oreffo, Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater. 5, 2063–2071 (2009). https://doi.org/10.1016/j.actbio.2009.03.010

    Article  CAS  Google Scholar 

  7. K.F. Palmer, D. Williams, Optical properties of water in the near infrared. J Opt Soc Am 64, 1107–1110 (1974). https://doi.org/10.1364/JOSA.64.001107

    Article  CAS  Google Scholar 

  8. E.N. Antonov, L.I. Krotova, N.V. Minaev, S.A. Minaeva, A.V. Mironov, V.K. Popov, V.N. Bagratashvili, Surface-selective laser sintering of thermolabile polymer particles using water as heating sensitizer. Quant. Electron. 45, 1023–1028 (2015). https://doi.org/10.1070/QE2015v045n11ABEH015817

    Article  CAS  Google Scholar 

  9. N.V. Minaev, T.S. Demina, S.A. Minaeva, A.A. Dulyasova, E.D. Minaeva, S.A. Gonchukov, T.A. Akopova, P.S. Timashev, The evolution of surface-selective laser sintering: modifying and forming 3D structures for tissue engineering. Bull. Russ. Acad. Sci. Phys. 84, 1315–1320 (2020). https://doi.org/10.3103/S1062873820110192

    Article  CAS  Google Scholar 

  10. E.A. Grebenik, V.D. Grinchenko, S.N. Churbanov, N.V. Minaev, B.S. Shavkuta, P.A. Melnikov, D.V. Butnaru, Y.A. Rochev, V.N. Bagratashvili, P.S. Timashev, Osteoinducing scaffolds with multi-layered biointerface. Biomed. Mater. 13, 054103 (2018). https://doi.org/10.1088/1748-605X/aac4cb

    Article  CAS  Google Scholar 

  11. A. Mazzoli, Selective laser sintering in biomedical engineering. Med. Biol. Eng. Compu. 51, 245–256 (2013). https://doi.org/10.1007/s11517-012-1001-x

    Article  Google Scholar 

  12. H. Sawalha, K. Schroën, R. Boom, Biodegradable polymeric microcapsules: preparation and properties. Chem. Eng. J. 169, 1–10 (2011). https://doi.org/10.1016/j.cej.2011.02.078

    Article  CAS  Google Scholar 

  13. E. Campos, J. Branquinho, A.S. Carreira, A. Carvalho, P. Coimbra, P. Ferreira, M.H. Gil, Designing polymeric microparticles for biomedical and industrial applications. Eur. Polymer J. 49, 2005–2021 (2013). https://doi.org/10.1016/j.eurpolymj.2013.04.033

    Article  CAS  Google Scholar 

  14. Y. Hong, C. Gao, Y. Xie, Y. Gong, J. Shen, Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials 26, 6305–6313 (2005). https://doi.org/10.1016/j.biomaterials.2005.03.038

    Article  CAS  Google Scholar 

  15. L. Yang, J. Zhang, J. He, J. Zhang, Z. Gan, Fabrication, hydrolysis and cell cultivation of microspheres from cellulose-graft-poly(l-lactide) copolymers. RSC Adv. 6, 17617–17623 (2016). https://doi.org/10.1039/c5ra25993b

    Article  CAS  Google Scholar 

  16. T.S. Demina, T.A. Akopova, L.V. Vladimirov, A.N. Zelenetskii, E.A. Markvicheva, C. Grandfils, Polylactide-based microspheres prepared using solid-state copolymerized chitosan and d,l-lactide. Mater. Sci. Eng. C 59, 333–338 (2016). https://doi.org/10.1016/j.msec.2015.09.094

    Article  CAS  Google Scholar 

  17. T.S. Demina, M.G. Drozdova, C. Sevrin, P. Compère, T.A. Akopova, E. Markvicheva, C. Grandfils, Biodegradable cell microcarriers based on chitosan/polyester graft-copolymers. Molecules 25, 1949 (2020). https://doi.org/10.3390/molecules25081949

    Article  CAS  Google Scholar 

  18. E. Bouyer, G. Mekhloufi, V. Rosilio, J.-L. Grossiord, F. Agnely, Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int. J. Pharm. 436, 359–378 (2012). https://doi.org/10.1016/j.ijpharm.2012.06.052

    Article  CAS  Google Scholar 

  19. V. Calabrese, J.C. Courtenay, K.J. Edler, J.L. Scott, Pickering emulsions stabilized by naturally derived or biodegradable particles. Curr. Opin. Green Sustain. Chem. 12, 83–90 (2018). https://doi.org/10.1016/j.cogsc.2018.07.002

    Article  Google Scholar 

  20. T.S. Demina, L.A. Kilyashova, T.N. Popyrina, E.A. Svidchenko, S. Bhuniya, T.A. Akopova, C. Grandfils, Polysaccharides as stabilizers for polymeric microcarriers fabrication. Polymers 13, 3045 (2021). https://doi.org/10.3390/polym13183045

    Article  CAS  Google Scholar 

  21. M.S. Rodriguez, L.A. Albertengo, E. Agullo, Emulsification capacity of chitosan. Carbohyd. Polym. 48, 271–276 (2002). https://doi.org/10.1016/S0144-8617(01)00258-2

    Article  CAS  Google Scholar 

  22. R. Cheung, T. Ng, J. Wong, W. Chan, Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. Drugs 13, 5156–5186 (2015). https://doi.org/10.3390/md13085156

    Article  CAS  Google Scholar 

  23. A. Anitha, S. Sowmya, P.T.T.S.S. Kumar, S. Deepthi, K.P.P. Chennazhi, H. Ehrlich, M. Tsurkan, R. Jayakumar, Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci. 39, 1644–1667 (2014). https://doi.org/10.1016/j.progpolymsci.2014.02.008

    Article  CAS  Google Scholar 

  24. S.K. Sahoo, J. Panyam, S. Prabha, V. Labhasetwar, Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release 82, 105–114 (2002). https://doi.org/10.1016/S0168-3659(02)00127-X

    Article  CAS  Google Scholar 

  25. T.S. Demina, C. Grandfils, Solid-state modified polylactides for processing of 3D materials with enhanced biocompatibility. Mater. Today 12, 93–96 (2019). https://doi.org/10.1016/j.matpr.2019.03.072

    Article  CAS  Google Scholar 

  26. S.M. Ahsan, M. Thomas, K.K. Reddy, S.G. Sooraparaju, A. Asthana, I. Bhatnagar, Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Biol. Macromol. 110, 97–109 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.140

    Article  CAS  Google Scholar 

  27. A. Privalova, E. Markvicheva, C. Sevrin, M. Drozdova, C. Kottgen, B. Gilbert, M. Ortiz, C. Grandfils, Biodegradable polyester-based microcarriers with modified surface tailored for tissue engineering. J. Biomed. Mater. Res. A 103, 939–948 (2015). https://doi.org/10.1002/jbm.a.35231

    Article  CAS  Google Scholar 

  28. H.-T. Liao, M.-Y. Lee, W.-W. Tsai, H.-C. Wang, W.-C. Lu, Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J. Tissue Eng. Regen. Med. 10, E337–E353 (2016). https://doi.org/10.1002/term.1811

    Article  CAS  Google Scholar 

  29. C.H. Chen, M.Y. Lee, V.B.H. Shyu, Y.C. Chen, C.T. Chen, J.P. Chen, Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering. Mater. Sci. Eng., C 40, 389–397 (2014). https://doi.org/10.1016/j.msec.2014.04.029

    Article  CAS  Google Scholar 

  30. K.N. Bardakova, E.A. Grebenik, E.V. Istranova, L.P. Istranov, Y.V. Gerasimov, A.G. Grosheva, T.M. Zharikova, N.V. Minaev, B.S. Shavkuta, D.S. Dudova, S.V. Kostyuk, N.N. Vorobeva, V.N. Bagratashvili, P.S. Timashev, R.K. Chailakhyan, Reinforced hybrid collagen sponges for tissue engineering. Bull. Exp. Biol. Med. 165, 142–147 (2018). https://doi.org/10.1007/s10517-018-4116-8

    Article  CAS  Google Scholar 

  31. K.N. Bardakova, E.A. Grebenik, N.V. Minaev, S.N. Churbanov, Z. Moldagazyeva, G.E. Krupinov, S.V. Kostjuk, P.S. Timashev, Tailoring the collagen film structural properties via direct laser crosslinking of star-shaped polylactide for robust scaffold formation. Mater. Sci. Eng. C 107, 110300 (2020). https://doi.org/10.1016/j.msec.2019.110300

    Article  CAS  Google Scholar 

  32. T.S. Demina, A.S. Kuryanova, N.A. Aksenova, A.G. Shubnyy, T.N. Popyrina, Y.V. Sokovikov, E.V. Istranova, P.L. Ivanov, P.S. Timashev, T.A. Akopova, Chitosan-g-oligo/polylactide copolymer non-woven fibrous mats containing protein: from solid-state synthesis to electrospinning. RSC Adv. 9, 37652–37659 (2019). https://doi.org/10.1039/C9RA07667K

    Article  CAS  Google Scholar 

  33. T.N. Popyrina, E.A. Svidchenko, T.S. Demina, T.A. Akopova, A.N. Zelenetsky, Effect of the chemical structure of chitosan copolymers with oligolactides on the morphology and properties of macroporous hydrogels based on them. Polym. Sci. Ser. B 63, 536–543 (2021). https://doi.org/10.1134/S1560090421050109

    Article  CAS  Google Scholar 

  34. T.S. Demina, C. Sevrin, C. Kapchiekue, T.A. Akopova, C. Grandfils, Chitosan-g-polyester microspheres: effect of length and composition of grafted chains. Macromol. Mater. Eng. 304, 1900203 (2019). https://doi.org/10.1002/mame.201900203

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by Grant (MK-1974.2019.3) of the President of the Russian Federation (in a part of development and optimization of the microparticles), Russian Foundation for Basic Research (18-32-20184, experimental setup for SSLS), Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS (development of new laser additive technologies). The authors thank the University of Liège (Belgium), Wallonie-Bruxelles International (WBI) and Sechenov University (Russia) for the financial support of researcher’s mobility in a frame of this Russian-Belgian collaboration. This work was performed as part of State Task no. 0082-2019-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Demina.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demina, T.S., Popyrina, T.N., Minaeva, E.D. et al. Polylactide microparticles stabilized by chitosan graft-copolymer as building blocks for scaffold fabrication via surface-selective laser sintering. Journal of Materials Research 37, 933–942 (2022). https://doi.org/10.1557/s43578-022-00498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00498-1

Keywords

Navigation