Skip to main content

Advertisement

Log in

Electrodeposition and properties of CoWRe alloys

  • Article
  • FOCUS ISSUE: Transition Metal-based Nanomaterials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the chemical and phase compositions of ternary electrolytic alloys CoWRe deposited from an acidic citrate electrolyte have been investigated as a function of current density. The obtained coatings were found to have electrocatalytic properties in the hydrogen evolution reaction (HER). In the studied range of tungsten and rhenium concentrations, the maximum decrease in hydrogen evolution overvoltage in comparison with the cobalt coating is 170 mV, and the hydrogen exchange current increases by more than 15 times. Corrosion tests in solutions of different mineralization showed that the coatings have the highest corrosion resistance in a model corrosive solution of NaCl—4.5 kΩ cm2, and in a KOH solution—2.7 kΩ cm2. It has been shown that to obtain efficient and corrosion-resistant electrocatalysts, the amount of refractory metals not exceeding 30 at.% and the formation of a crystal structure during electrodeposition are required.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. N. Tsyntsaru, A. Dikusar, H. Cesiulis et al., Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloys. Powder Metall. Met. Ceram. 48, 419 (2009)

    Article  CAS  Google Scholar 

  2. V. Kublanovsky, O. Bersirova, Yu. Yapontseva, H. Cesiulis, E. Podlaha-Murphy, Cobalt-molybdenum-phosphorus alloys: electroplating and corrosion properties. Prot. Met. Phys. Chem. Surf. 45, 588 (2009)

    Article  CAS  Google Scholar 

  3. H. Cesiulis, A. Budreika, Hydrogen evolution and corrosion of W and Mo alloys with Co and Ni. Fiz.-Khim. Mekh. Mater. 8, 808 (2010)

    Google Scholar 

  4. A. Bodaghi, J. Hosseini, Corrosion behavior of electrodeposited cobalt-tungsten alloy coatings in NaCl aqueous solution. Int. J. Electrochem. Sci. 7, 2584 (2012)

    CAS  Google Scholar 

  5. E. Vernickaite, N. Tsyntsaru, H. Cesiulis, Electrodeposition and corrosion behavior of nanostructured cobalt-tungsten alloys coatings. Trans. IMF 94, 313 (2016)

    Article  CAS  Google Scholar 

  6. N.D. Sakhnenko, M.V. Ved, Yu.K. Hapon, T.A. Nenastina, Functional Coatings of Ternary Alloys of Cobalt with Refractory Metal. Russ. J. Appl. Chem. 88, 1941 (2015)

    Article  CAS  Google Scholar 

  7. G. Yar-Mukhamedova, M. Ved’, N. Sakhnenko, T. Nenastina, Electrodeposition and properties of binary and ternary cobalt alloys with molybdenum and tungsten. Appl. Surf. Sci. 445, 298 (2018)

    Article  CAS  Google Scholar 

  8. M.V. Ved’, N.D. Sakhnenko, A.V. Karakurkchi, K.D. Pershina, IYu. Yermolenko, Corrosion properties of galvanic Fe–Mo(W), Fe–Mo–W coatings. Funct. Mater. 26, 534 (2019)

    Google Scholar 

  9. R. Garcia-Garcia, G. Ortega-Zarzosa, M.E. Rincón, G. Orozco, The hydrogen evolution reaction on rhenium metallic electrodes: a selected review and new experimental evidence. Electrocatalysis 6, 263 (2015)

    Article  CAS  Google Scholar 

  10. Y.S. Yapontseva, T.V. Maltseva, V.S. Kublanovsky, O.A. Vyshnevskyi, Electrodeposition and properties of Co-Re alloys. Int. J. Refract. Hard Met. 96, 105469 (2021)

    Article  CAS  Google Scholar 

  11. A. Vargas-Uscategui, E. Mosquera, B. Chornik, L. Cifuentes, Electrocatalysis of the hydrogen evolution reaction by rhenium oxides electrodeposited by pulsed-current. Electrochim. Acta 178, 739 (2015)

    Article  CAS  Google Scholar 

  12. M. Kim, Z. Yang, J.H. Park, S.M. Yoon, B.A. Grzybowski, Nanostructured rhenium−carbon composites as hydrogen-evolving catalysts effective over the entire pH range. ACS Appl. Nano Mater. 2, 2725 (2019)

    Article  CAS  Google Scholar 

  13. Yu.S. Yapontseva, V.S. Kublanovsky, O.A. Vyshnevskyi, Electrodeposition of CoMoRe alloys from a citrate electrolyte. J. Alloys Compd. 766, 894 (2018)

    Article  CAS  Google Scholar 

  14. Yu.S. Yapontseva, T.V. Maltseva, V.S. Kublanovsky, O.A. Vyshnevskyi, Electrodeposition of CoWRe alloys from polyligand citrate-pyrophosphate electrolyte. J. Alloys Compd. 803, 1 (2019)

    Article  CAS  Google Scholar 

  15. Y. Yapontseva, T. Maltseva, V. Kublanovsky, Electrosynthesis of nanostructured thin coatings with superalloys CoW, CoRe and CoWRe with valuable properties in hardness and corrosion resistance. Mater. Today 35, 584 (2021)

    CAS  Google Scholar 

  16. Y.S. Yapontseva, V.S. Kublanovsky, Corrosion and catalytic properties of Co–Mo–Re electrolytic coatings. Mater. Sci. 55, 213 (2019)

    Article  CAS  Google Scholar 

  17. L. Ma, X. Xi, Z. Nie, T. Dong, Y. Mao, Electrodeposition and characterization of Co-W alloy from regenerated tungsten salt. Int. J. Electrochem. Sci. 12, 1034 (2017)

    Article  CAS  Google Scholar 

  18. N. Eliaz, E. Gileadi: Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals, in Modern Aspects of Electrochemistry 42, edited by C. Vayenas et al., (Springer, New York, 2008).

  19. Yu.S. Yapontseva, A.I. Dikusar, V.S. Kyblanovskii, Study of the composition, corrosion, and catalytic properties of Co-W alloys electrodeposited from a citrate pyrophosphate electrolyte. Surf. Engin. Appl. Electrochem. 50, 330 (2014)

    Article  Google Scholar 

  20. E. Vernickaite, N. Tsyntsaru, K. Sobczak, H. Cesiulis, Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium. Electrochim. Acta 318, 597 (2019)

    Article  CAS  Google Scholar 

  21. P. Quaino, F. Juarez, E. Santos, W. Schmickler, Volcano plots in hydrogen electrocatalysis—uses and abuses. Beilstein J. Nanotechnol. 5, 846 (2014)

    Article  Google Scholar 

  22. B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571 (2002)

    Article  CAS  Google Scholar 

  23. V.V. Kuznetsov, Yu.D. Gamburg, V.V. Zhulikov, V.M. Krutskikh, E.A. Filatova, A.L. Trigub, O.A. Belyakova, Electrodeposited NiMo, CoMo, ReNi, and electroless NiReP alloys as cathode materials for hydrogen evolution reaction. Electrochim. Acta 354, 136610 (2020)

    Article  CAS  Google Scholar 

  24. C. Wang, H.K. Bilan, E.J. Podlaha, Electrodeposited Co-Mo-TiO2 electrocatalysts for the hydrogen evolution reaction. J. Electrochem. Soc. 166, 661 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Program on Fundamental Studies of the National Academy of Sciences of Ukraine, “Fine Chemicals” Agreement No. 07–21, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kublanovsky.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yapontseva, Y.S., Maltseva, T.V., Kublanovsky, V.S. et al. Electrodeposition and properties of CoWRe alloys. Journal of Materials Research 37, 2216–2224 (2022). https://doi.org/10.1557/s43578-022-00497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00497-2

Keywords

Navigation