Skip to main content

Advertisement

Log in

Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloys

  • Sintered Metals and Alloys
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The tribological and corrosive characteristics of binary and ternary alloys electrodeposited from CoW, FeW, CoMoP, and CoWP citrate solutions are studied. The tungsten content of CoW alloys reaches 31 at.% and of FeW alloys 34 at.%. The introduction of phosphorus into the alloys reduces the content of tungsten from 26.7 to 19.7 at.% (at 4.5 at.% P). The molybdenum content of CoMoP alloys is 0.7–1.0 at.% at 5 to 8 at.% P. The electrolytic tungsten alloys are nanocrystalline and subgrains are 4 to 7 nm in size. The nanohardness of tungsten-rich alloys (∼13 GPa) is comparable with that of electrolytic chromium coatings. The wear resistance of the deposited alloys is quite high and is commensurable with that of hard coatings such as TiB2, TiN, and TiAlN. The tribooxidation of FeW alloys in dry friction is revealed. The corrosion resistance of the coatings is similar to that for electrolytic chromium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Eskin, O. Berkh, G. Rogalsky, and J. Zahavi, “Co–W alloys for replacement of convectional hard chromium,” Plating Surf. Finish., 85, 79 (1998).

    CAS  Google Scholar 

  2. J. D. Shell and M. Rechtsteiner, “Replacement of chromium electroplating using advanced material technologies on gas turbine engine components,” Plating Surf. Finish., 87, 17 (2000).

    Google Scholar 

  3. H. Capel, P. H. Shipway, and S. J. Harris, “Sliding wear behavior of electrodeposited cobalt–tungsten and cobalt–tungsten–iron alloys,” Wear, 255, 917– 923 (2003).

    Article  CAS  Google Scholar 

  4. E. W. Brooman, “Wear behavior of environmentally acceptable alternatives to chromium coatings: cobaltbased and other coatings,” Metal Finish., 102, 42–54 (2004).

    Article  CAS  Google Scholar 

  5. D. Brockman and M. Wyrostek, “Chromium alternative solves problem,” Products Finish., 66, No. 3, 52–55 (2001).

    Google Scholar 

  6. N. Zaki, “Tin–cobalt as a substitute for hexavalent chrome plating for decorative purposes,” in: Proc. 3 rd Int. Conf. on Hard and Decorative Chromium for the 21st Century, Saint-Etienne, France (2001).

  7. K. S. Kumar, H. Van Swygenhoven, and S. Suresh, “Mechanical behavior of nanocrystalline metals and alloys,” Acta Mater., 51, No. 19, 5743–5774 (2003).

    Article  CAS  Google Scholar 

  8. L. Wang, Y. Gao, Q. Xue, et al., “Graded composition and structure in nanocrystalline Ni–Co alloys for decreasing internal stress and improving tribological properties,” J. Phys. D: Appl. Phys., 38, 1318 (2005).

    Article  CAS  ADS  Google Scholar 

  9. R. Mishra and R. Balasubramaniam, “Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel,” Corros. Sci., 46, 3019 (2004).

    Article  CAS  Google Scholar 

  10. R. N. Mitra, K. B. Ghosh, K. Singh, and N. K. D. Chowdhury, “Characteristics of electrochemically deposited nickel–cobalt–tungsten alloy semiconductor diodes,” Int. J. Electronics, 54, No. 2, 355–360 (1983).

    Article  CAS  Google Scholar 

  11. M. Donten, Z. Stojek, and H. Cesiulis, “Formation of nanofibres in thin layers of amorphous W alloys with Ni, Co and Fe obtained by electrodeposition,” J. Electrochem. Soc., 150, No. 2, C95–C98 (2003).

    Article  CAS  Google Scholar 

  12. H. Cesiulis, M. Donten, M. L. Donten, and Z. Stojek, “Electrodeposition of Ni–W, Ni–Mo and Ni–Mo–W alloys from pyrophosphate baths,” Mater. Sci. (Medžiagotyra), 7, No. 4, 237–241 (2001).

    Google Scholar 

  13. M. Donten, H. Cesiulis, and Z. Stojek, “Electrodeposition and properties of Ni–W, Fe–W and Ni–Fe–W amorphous alloys. A comparative study,” Electrochim. Acta, 45, No. 20, 3389–3396 (2000).

    Article  CAS  Google Scholar 

  14. E. J. Podlaha and D. Landolt, “Induced codeposition. I. An experimental investigation of Ni–Mo alloys,” J. Electrochem. Soc., 143, 885 (1996).

    Article  CAS  Google Scholar 

  15. E. J. Podlaha and D. Landolt, “Induced codeposition. III. Molybdenum alloys with nickel, cobalt and iron,” J. Electrochem. Soc., 144, No. 5, 1672–1680 (1997).

    Article  CAS  Google Scholar 

  16. H. Cesiulis, X. Xie, and E. Podlaha-Murphy, “Electrodeposition of Co–W Alloys with P and Ni,” Mater. Sci. (Medžiagotyra), 15, No. 2, 115–122 (2009).

    Google Scholar 

  17. F. Brenner, Electrodeposition of Alloys, Academic Press Inc., New York (1963).

    Google Scholar 

  18. A. T. Vas’ko, Electrochemistry of Molybdenum and Tungsten [in Russian], Kiev (1977).

  19. V. V. Bondar, V. V. Grinina, and V. N. Pavlov, “Electrodeposition of binary alloys,” in: Advances in Science and Technology. Ser. Electrochemistry, Issue 16, Moscow (1980), p. 329.

  20. A. A. Zakharov and P. M. Vyacheslavov, Hard Wear-Resistant Galvanic Coatings [in Russian], Moscow (1980), p. 51.

  21. M. A. M. Ibrahim, S. S. Abel El Kehim, and S. O. Moussa, “Electrodeposition of nanocrystalline cobalt–tungsten alloys from citrate electrolyte,” J. Appl. Electrochem., 33, 627–633 (2003).

    Article  CAS  Google Scholar 

  22. M. E. McHenry, M. A. Willard, and D. E. Laughlin, “Amorphous and nanocrystalline materials for applications as soft magnets,” Progr. Mater. Sci., 44, 291 (1999).

    Article  CAS  Google Scholar 

  23. N. I. Tsyntsaru, S. S. Belevskii, and G. F. Volodina, “Composition, structure, and corrosion properties of coatings of Co–W alloys electrodeposited under direct current,” Surf. Eng. Appl. Electrochem., 43, No. 5, 312–317 (2007).

    Article  Google Scholar 

  24. V. Kublanovsky, O. Bersirova, J. Yapontseva, et al., “Pulse electrodeposition of cobalt–tungsten alloys from citrate electrolyte on steel, its corrosion characteristics,” Phys. Chem. Mech. Mater., No. 6 (Special Issue), 80–90 (2007).

  25. Yu. D. Gamburg and E. N. Zakharov, “The effect of hydrogen on amorphization of iron–tungsten alloys produced by electrochemical synthesis,” Russian J. Electrochem., 43, No. 6, 736–739 (2008).

    Article  Google Scholar 

  26. V. Kublanovsky, O. Bersirova, A. Dikusar, et al., “Electrodeposition and corrosion properties of nanocrystalline Fe–W alloys,” Phys. Chem. Mech. Mater., No. 7, 308–314 (2008).

    Google Scholar 

  27. S. P. Sidedl’nikova, A. I. Dikusar, N. I. Tsyntsaru, and J.-P. Celis, “Effect of electrodeposition conditions on the morphology, composition, and mechanical properties of Co–Mo–P alloys,” Electron. Obrab. Mater., 44, No. 6, 7–15 (2008).

    Google Scholar 

  28. N. Tsyntsaru, S. Belevsky, A. Dikusar, and J.-P. Celis, “Tribological behavior of electrodeposited cobalt–tungsten coatings: dependence on current parameters,” Trans. Inst. Metal Finish., 86, No. 6, 301–307 (2008).

    Article  CAS  Google Scholar 

  29. P. B. Jr. Hubbart and E. J. Podlaha, “The study of induced codeposition of Ni–W alloys,” in: Proc. 1997 th Meeting (May 14–18, 2001, Toronto, Canada), Toronto (2001), p. 372.

  30. H. Cesiulis and E. J. Podlaha-Murphy, “Electrolyte considerations of electrodeposited Ni–W alloys for microdevice fabrication,” Mater. Sci. (Medžiagotyra), 9, No. 4, 324–327 (2003).

    Google Scholar 

  31. N. Tsyntsaru, H. Cesiulis, P. Globa, and A. Dikusar, “The fabrication of CoW nanowires and nanotubes by the electrodeposition technique,” in: Proc. 4th Int. Conf. on Materials Science and Condensed Matter Physics, MSCMP (September 23–26, 2008, Chisinau, Moldova.), Shisinau (2008), p. 162.

  32. N. Atanasov, K. Gencheva, and M. Bratoeva, “Properties of nickel–tungsten alloys electrodeposited from sulfamate electrolytes,” Plating Surf. Finish., 84, No. 2, 67–71 (1997).

    Google Scholar 

  33. M. Ved, M. Sakhnenko, T. Nenastina, et al., “Corrosion and catalytic properties of galvanic binary d6–8 metal alloys,” Phys. Chem. Mech. Mater., No. 7, 346–353 (2008).

    Google Scholar 

  34. S. M. S. I. Dulal, C. B. Shin, J. Y. Sung, and C.-K. Kim, “Electrodeposition of CoWP Film. II. Effect of electrolyte concentration,” J. Appl. Electrochem., 38, 82–91 (2008).

    Google Scholar 

  35. Yu. D. Gamburg, E. N. Zakharov, and G. E. Goryunov, “Electrochemical deposition, structure, and properties of iron–tungsten alloy,” Élektrokhimiya, 37, No. 7, 789–793 (2001).

    Google Scholar 

  36. M. Donten, Z. Stojek, and J. G. Osteryoung, “Voltammetric, optical, and spectroscopic examination of anodically forced passivation of Co–W amorphous alloys,” J. Electrochem. Soc., 140, 3417 (1993).

    Article  CAS  Google Scholar 

  37. B. E. Warren and J. Biscoe, J. Am. Ceram. Soc., 21, 49 (1938).

    Article  CAS  Google Scholar 

  38. L. P. Wang, Y. Gao, T. Xu, and Q. J. Xue, “A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure,” Mater. Chem. Phys., 99, 96 (2006).

    Article  CAS  Google Scholar 

  39. Yu. D. Gamburg, Electrolytic Crystallization of Metals and Alloys [in Russian], Ianus-K, Moscow (1997), p. 384.

    Google Scholar 

  40. B. Prakash, Low Friction and Wear Resistance of Plasma Immersed Ion Implanted Boron Based Layers under Sliding Conditions, PhD Thesis, Catholic University, Leuven, Belgium (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Tsyntsaru.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 48, No. 7–8 (468), pp. 66–78, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsyntsaru, N., Dikusar, A., Cesiulis, H. et al. Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloys. Powder Metall Met Ceram 48, 419–428 (2009). https://doi.org/10.1007/s11106-009-9150-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-009-9150-7

Keywords

Navigation