Skip to main content

Advertisement

Log in

Effects of Eu3+, Gd3+ and Yb3+ substitution on the structural, photoluminescence, and decay properties of silicate-based bioactive glass powders

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bioactive glass (BG) powders containing europium (Eu3+), gadolinium (Gd3+) and ytterbium (Yb3+) were synthesized through sol–gel process. Effects of the related rare-earth ions on the structural, photoluminescence (PL), and decay characteristics were investigated. In vitro, acellular bioactivity of the synthesized powders was examined in simulated body fluid (SBF). Results revealed that all of the BG powders tested in the study showed PL emission under excitation at 374 nm. Among the rare earth dopants tested in the study, Eu3+-containing samples exhibited the strongest emission intensities and for all the glasses optimum dopant concentration was 3 wt% based on the luminescence properties. The synthesized BG have ability to convert to hydroxyapatite (HA) after immersion in SBF. However, more detailed studies with resolution techniques are needed to confirm these observations, that the BG containing Eu3+, Gd3+, and Yb3+ have the ability to form HA and can be used in biomedical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. A.M. Ibarra-Ruiz, D.C. Rodríguez Burbano, J.A. Capobianco, Adv. Phys. 1(2), 194–225 (2016). https://doi.org/10.1080/23746149.2016.1165629

    Article  CAS  Google Scholar 

  2. U.A. Gunasekera, Q.A. Pankhurst, M. Douek, Target. Oncol. 4, 169–181 (2009). https://doi.org/10.1007/s11523-009-0118-9

    Article  Google Scholar 

  3. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994), p. 242

    Book  Google Scholar 

  4. L. Yuan, W.Y. Lin, K.B. Zheng, L.W. He, W.M. Huang, Chem. Soc. Rev. 42, 622–661 (2013). https://doi.org/10.1039/C2CS35313J

    Article  CAS  Google Scholar 

  5. Y.X. Yang, Y. Zheng, W.R. Cao, A. Titov, J. Hyvonen, J.R. Manders, J.G. Xue, P.H. Holloway, L. Qian, Nat. Photonics 9, 259–266 (2015). https://doi.org/10.1038/nphoton.2015.36

    Article  CAS  Google Scholar 

  6. W. Bae, W. Tan, J.-I. Hong, Fluorescent dye-doped silica nanoparticles: new tools for bioapplications. Chem. Commun. 48, 2270–2282 (2012). https://doi.org/10.1039/C2CC16306C

    Article  CAS  Google Scholar 

  7. W. Arap, R. Pasqualini, M. Montalti, L. Petrizza, L. Prodi, E. Rampazzo, N. Zaccheroni, S. Marchiò, Curr Med Chem. 20(17), 2195–2211 (2013). https://doi.org/10.2174/0929867311320170005

    Article  CAS  Google Scholar 

  8. S. Bonacchi, D. Genovese, R. Juris, M. Montalti, L. Prodi, E. Rampazzo, N. Zaccheroni, Angew. Chem. Int. Ed. 50, 4056–4066 (2011). https://doi.org/10.1002/anie.201004996

    Article  CAS  Google Scholar 

  9. Y. Dwivedi, S.C. Zilio, J. Nanosci. Nanotechnol. 14, 1578–1596 (2014). https://doi.org/10.1166/jnn.2014.9104

    Article  CAS  Google Scholar 

  10. A. Escudero, A.I. Becerro, C. Carrillo-Carrión, N.O. Núñez, W.V. Zyuzin, M. Laguna, D. González-Mancebo, M. Ocaña, W.J. Parak, Nanophotonics. 6, 881–921 (2017). https://doi.org/10.1515/nanoph-2017-0007

    Article  CAS  Google Scholar 

  11. G. George, M.D. Simpson, B.R. Gautam, D. Fang, J. Peng, J. Wen, J.E. Davis, D. Ila, Z. Luo, RSC Adv. 8, 39296–39306 (2018). https://doi.org/10.1039/C8RA07806H

    Article  CAS  Google Scholar 

  12. D.J. Naczynski, M.C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C.M. Roth, R.E. Riman, P.V. Moghe, Nat. Commun. 4, 2199 (2013). https://doi.org/10.1038/ncomms3199

    Article  CAS  Google Scholar 

  13. M.N. Rahaman, D.E. Day, B.S. Bal, Q. Fu, S.B. Jung, L.F. Bonewald, A.P. Tomsia, Acta Biomater. 7(6), 2355–2373 (2011). https://doi.org/10.1016/j.actbio.2011.03.016

    Article  CAS  Google Scholar 

  14. L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, J. Biomed. Mater. Res. 5, 117–141 (1971). https://doi.org/10.1002/jbm.820050611

    Article  Google Scholar 

  15. M. Brink, T. Turunen, R.-P. Happonen, A. Yli-Urpo, Compositional dependence of bioactivity of glasses in the system Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2. J. Biomed. Mater. Res. 37, 114–121 (1997). https://doi.org/10.1002/(sici)1097-4636(199710)37:1<114::aid-jbm14>3.0.co;2-g

    Article  CAS  Google Scholar 

  16. D.Y. Zhu, B. Lu, J.H. Yin, Q.F. Ke, H. Xu, C.Q. Zhang, Y.P. Guo, Y.S. Gao, Int. J. Nanomed. 14, 1085–1100 (2019). https://doi.org/10.2147/IJN.S193576

    Article  CAS  Google Scholar 

  17. R. Borges, J.F. Schneider, J. Marchi, J. Mater. Sci. 54, 11390–11399 (2019). https://doi.org/10.1007/s10853-019-03715-1

    Article  CAS  Google Scholar 

  18. K. Kattel, J.Y. Park, W. Xu, H.G. Kim, E.J. Lee, B.A. Bony, W.C. Heo, Y. Chang, T.J. Kim, J.Y. Do, K.S. Chae, Y.W. Kwak, G.H. Lee, Colloids Surf. A 394A, 85–91 (2012). https://doi.org/10.1016/j.colsurfa.2011.11.032

    Article  CAS  Google Scholar 

  19. C.A. Barta, K. Sachs-Barrable, J. Jia, K.H. Thompson, K.M. Wasan, C. Orvig, Dalton Trans. 21, 5019–5030 (2007). https://doi.org/10.1039/B705123A

    Article  Google Scholar 

  20. H. Fneich, N. Gaumer, S. Chaussedent, W. Blanc, A. Mehdi, Molecules 23, 1768 (2018). https://doi.org/10.3390/molecules23071768

    Article  CAS  Google Scholar 

  21. G. Li, G. Liang, S. Zhao, K. Ma, W. Feng, D. Zhou, X. Liu, Adv. Appl. Ceram. 114(3), 164–174 (2015). https://doi.org/10.1179/1743676114Y.0000000210

    Article  CAS  Google Scholar 

  22. G. Miao, X. Chen, C. Mao, X. Li, Y. Li, C. Lin, J Sol-Gel Sci Technol 69, 250–259 (2014). https://doi.org/10.1007/s10971-013-3209-0

    Article  CAS  Google Scholar 

  23. Y. Fan, P. Yang, S. Huang, J. Jiang, H. Lian, J. Lin, J. Phys. Chem. C 131(10), 3462–3463 (2009). https://doi.org/10.1021/jp900515x

    Article  CAS  Google Scholar 

  24. T. Zambanini, R. Borges, P. Faria, G. Delpino, O. Sousa, I. Pereira, M. Marques, J. Marchi, Int. J. Appl. Ceram. Technol. (2019). https://doi.org/10.1111/ijac.13317

    Article  Google Scholar 

  25. R.T. Flynn, Q.E. Adams, K.M. Hopfensperger, X. Wu, W. Xu, Y. Kim, Med Phys. 46(7), 2935–2943 (2019). https://doi.org/10.1002/mp.13563

    Article  CAS  Google Scholar 

  26. ICRP, Metabolic data for ytterbium. Ann. ICRP 6(2–3), 82–84 (1981). https://doi.org/10.1016/0146-6453(81)90111-1.

  27. Z. Aramesh-Boroujeni, S. Jahani, M. Khorasani-Motlagh, K. Kerman, M. Noroozifar, RSC Adv. 10(39), 23002–23015 (2020). https://doi.org/10.1039/D0RA03895D

    Article  CAS  Google Scholar 

  28. A.M. Efimov, V.G. Pogareva, Chem. Geol. 229, 198–217 (2006). https://doi.org/10.1016/j.chemgeo.2006.01.022

    Article  CAS  Google Scholar 

  29. A.M. Deliormanlı, M. Yıldırım, Sol-gel synthesis of 13–93 bioactive glass powders containing therapeutic agents. J. Aust. Ceram. Soc. 52(2), 9–19 (2016). https://doi.org/10.81043/aperta.57399

    Article  Google Scholar 

  30. A.M. Deliormanlı, B. Rahman, S. Oğuzlar, K. Ertekin, Structural and luminescent properties of Er3+ and Tb3+ doped sol-gel based bioactive glass powders and electrospun nanofibers. J. Mater. Sci. 56(2), 14487–14504 (2021). https://doi.org/10.1007/s10853-021-06203-7

    Article  CAS  Google Scholar 

  31. Q. Nawaz, A. Pablos-Martín, J. Martins de SouzA e Silva, L. Berthold, K. Hurle, A.T. J. Eur. Ceram. Soc. 41(2), 1695–1706 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.09.052

    Article  CAS  Google Scholar 

  32. O.H. Andersson, Karlsson, K.H. Kari-Kangasniemi, Calcium phosphate formation at the surface of bioactive glass in vivo. J. Non. Cryst. Solids 119, 290–296 (1990). https://doi.org/10.1016/0022-3093(90)90301-2

  33. G. Sandeep, H.K. Varma, T.V. Kumary, S.S. Babu, A. John, Trends Biomater. Artif. Organs 19(2), 99–107 (2006)

    Google Scholar 

  34. G.A. Stanciu, I. Sandulescu, B. Savu, S.G. Stanciu, K.M. Paraskevopoulos et al., J. Biomed. Pharm. Eng. 1(1), 34–39 (2007)

    Google Scholar 

  35. L. Berzina-Cimdina, N. Borodajenko. Research of calcium phosphates using Fourier transform infrared spectroscopy. In T. Theophile (Ed.), Infrared Spectroscopy—Materials Science, Engineering and Technology. InTechOpen, London (2012)

  36. F. Baino, S. Yamaguchi, Biomimetics 5, 57 (2020). https://doi.org/10.3390/biomimetics5040057

    Article  CAS  Google Scholar 

  37. A. Oyane, K. Onuma, A. Ito, H.-M. Kim, T. Kokubo, T. Nakamura, Formation and growth of clusters in conventional and new kinds of simulated body fluids. J. Biomed. Mater. Res. 64, 339–348 (2003). https://doi.org/10.1002/jbm.a.10426

    Article  CAS  Google Scholar 

  38. B.A. Myszka, P.I. Schodder, S. Leupold, M.K.S. Barr, K. Hurle, M. Schüßler, B. Demmert, J. Biggemann, T. Fey, A.R. Boccaccini, S.E. Wolf, Adv. Eng. Mater. 22, 2000044 (2020). https://doi.org/10.1002/adem.202000044

    Article  CAS  Google Scholar 

  39. M. Mozafari, F. Moztarzadeh, M. Tahriri, J. Non-Cryst. Solids 356(28), 1470–1478 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.04.040

    Article  CAS  Google Scholar 

  40. A. Oyane et al., J. Biomed. Mater. Res. 65A(2), 188–195 (2003). https://doi.org/10.1002/jbm.a.10482

    Article  CAS  Google Scholar 

  41. P. Feng, M. Niu, C. Gao, S. Peng, C. Shuai, Sci. Rep. 4, 5599 (2014). https://doi.org/10.1038/srep05599

    Article  CAS  Google Scholar 

  42. Z. Li, T. Wen, Y. Su, X. Wei, C. He, D. Wang, CrystEngComm 16, 4202–4209 (2014). https://doi.org/10.1039/C3CE42517G

    Article  CAS  Google Scholar 

  43. Y. Zhang, M. Hu, X. Wang, Z. Zhou, Y. Liu, Nanomaterials (Basel, Switzerland) 8(11), 961 (2018). https://doi.org/10.3390/nano8110961

    Article  CAS  Google Scholar 

  44. S. Wang, J. Feng, S. Song, H. Zhang, CrystEngComm 15, 7142–7151 (2013). https://doi.org/10.1039/C3CE40679B

    Article  CAS  Google Scholar 

  45. S. Huang, X. Kang, Z. Cheng, P. Ma, Y. Jia, J. Lin, J Colloid Interfaces Sci. 387(1), 285–291 (2012). https://doi.org/10.1016/j.jcis.2012.08.004

    Article  CAS  Google Scholar 

  46. J. Ovenstone, R. Withnall, J. Silver, J. Mater. Res. 23(7), 1854–1861 (2008). https://doi.org/10.1557/JMR.2008.0231

    Article  CAS  Google Scholar 

  47. C. Wu, L. Xia, P. Han, L. Mao, J. Wang, D. Zhai, B. Fang, J. Chang, Y. Xiao, ACS Appl. Mater. Interfaces 8(18), 11342–11354 (2016). https://doi.org/10.1021/acsami.6b03100

    Article  CAS  Google Scholar 

  48. R.T. Wegh, H. Donker, A. Meijerink, R.J. Lamminmäki, J. Hölsä, Phys. Rev. B 56(21), 13841 (1997). https://doi.org/10.1103/PhysRevB.56.13841

    Article  CAS  Google Scholar 

  49. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, S.C. Sharma, D.V. Sunitha, C. Shivakumara, R.P.S. Chakradhar, Acta Part A Mol. Biomol. Spectrosc. 96, 532–540 (2012). https://doi.org/10.1016/j.saa.2012.04.067

    Article  CAS  Google Scholar 

  50. R. Kumar Tamrakar, D. Prasad Bisen, N. Brahme, J. Radiat. Res. Appl. Sci. 7(4), 550–559 (2014). https://doi.org/10.1016/j.jrras.2014.09.005

    Article  Google Scholar 

  51. A. Venkatesan, N. Raja Krishna Chandar, A. Kandasamy, M. Karl Chinnu, K. Nagappan Marimuthu, R. Mohan Kumar, R. Jayavel, Luminescence and electrochemical properties of rare earth (Gd, Nd) doped V2O5 nanostructures synthesized by a non-aqueous sol-gel route. RSC Adv. 5(28), 21778–21785 (2015). https://doi.org/10.1039/C4RA14542A

    Article  CAS  Google Scholar 

  52. B. Schaudel, P. Goldner, M. Prassas, F. Auzel, J. Alloys Compd. 300, 443–449 (2000). https://doi.org/10.1016/S0925-8388(99)00760-4

    Article  Google Scholar 

  53. A. Baranowska, M. Kochanowicz, A. Wajda, M. Leśniak, J.M. Żmojda, P. Miluski, I. Zgłobicka, K.J. Kurzydłowski, D. Dorosz, Sensors. 21(6), 2054 (2021). https://doi.org/10.3390/s21062054

    Article  CAS  Google Scholar 

  54. Z. Burshtein, Y. Kalisky, S.Z. Levy, P. Le Boulanger, S. Rotman, IEEE J. Quantum Electron. 36, 8 (2000). https://doi.org/10.1109/3.853562

    Article  Google Scholar 

  55. M.B. Tofolo, G. Ricci, L. Caneve, I. Kaplan-Ashiri, Sci. Rep. 9, 16170 (2019). https://doi.org/10.1038/s41598-019-52587-7

    Article  CAS  Google Scholar 

  56. M. Gaft, L. Nagli, G. Panczer, G. Waychunas, N. Porat, Am. Miner. 93(1), 158–167 (2008). https://doi.org/10.2138/am.2008.2576

    Article  CAS  Google Scholar 

  57. C.E. Barker, R.C. Burruss, O.C. Kopp, H G. Machel, D J. Marshall, P. Wright, H.Y. Colbum, Causes and emission of luminescence in calcite and dolomite, in Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications (SEPM, Tulsa, 1991). https://doi.org/10.2110/scn.91.25.0009.

  58. A. Sepahvandi, F. Moztarzadeh, M. Mozafari, M. Ghaffari, N. Raee, Colloids Surf. B 86(2), 390–396 (2011). https://doi.org/10.1016/j.colsurfb.2011.04.027

    Article  CAS  Google Scholar 

  59. T.R. Machado, J.C. Sczancoski, H. Beltrán-Mir, M.S. Li, J. Andrés, E. Cordoncillo, E. Leite, E. Longo, Ceram. Int. 44, 236–245 (2018). https://doi.org/10.1016/j.ceramint.2017.09.164

    Article  CAS  Google Scholar 

  60. S.S. Yi, J.S. Bae, B.K. Moon, J.H. Jeong, J.C. Park, I.W. Kim, Appl. Phys. Lett. 81, 3344–3346 (2002)

    Article  CAS  Google Scholar 

  61. J. Włodarczyk, B. Kierdaszuk, Biophys. J. 85(1), 589–598 (2003). https://doi.org/10.1016/S0006-3495(03)74503-2

    Article  Google Scholar 

  62. S. Surendra Babu, P. Babu, C.K. Jayasankar, W. Sievers, Th. Tröster, G. Wortmann, J. Lumin. 126(1), 109–120 (2007). https://doi.org/10.1016/j.jlumin.2006.05.010

    Article  CAS  Google Scholar 

  63. J.K. Krebs, J.M. Brownstein, J.T. Gibides, Decay dynamics of europium excited states in bioactive glasses. J. Lumin. 128(5–6), 780–782 (2008). https://doi.org/10.1016/j.jlumin.2007.12.008

    Article  CAS  Google Scholar 

  64. B.V. Padlyak, A. Drzewiecki, T.B. Padlyak, V.T. Adamiv, I.M. Teslyuk, Resonant excited UV luminescence of the Gd3+ centres in borate glasses, co-doped with Gd and Ag. Opt. Mater. 79, 302–309 (2018). https://doi.org/10.1016/j.optmat.2018.03.050

    Article  CAS  Google Scholar 

  65. C. Jiang, F. Gan, J. Zhang, G. Huang, Mater. Lett. 41(4), 209–214 (1999). https://doi.org/10.1016/S0167-577X(99)00132-9

    Article  CAS  Google Scholar 

  66. V.A. Escobar Barrios, J.R.R. Méndez, N.V. Pérez Aguilar, G.A. Espinosa, J.L. Dávila Rodríguez, FTIR—an essential characterization technique for polymeric materials, in Infrared spectroscopy—Materials Science, Engineering and Technology (InTechOpen, London, 2012), pp. 195–212. https://doi.org/10.5772/36044.

  67. J.L. Koenig, Infrared and Raman Spectroscopy of Polymers (Rapra Technology, Shropshire, 2001)

    Google Scholar 

  68. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24, 721–734 (1990). https://doi.org/10.1002/jbm.820240607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank graduate student Mertcan Ensoylu for the technical assistance during powder synthesis. Financial support from The Scientific and Technological Research Council of Turkey (TUBITAK, The Grant Program for Scientific and Technological Research Projects, Grant No.: 219M212), and the Scientific Research Projects Coordination Unit of Manisa Celal Bayar University (BAP, Project No.: 2020-067) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin M. Deliormanlı.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1102 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deliormanlı, A.M., Oguzlar, S. & Zeyrek Ongun, M. Effects of Eu3+, Gd3+ and Yb3+ substitution on the structural, photoluminescence, and decay properties of silicate-based bioactive glass powders. Journal of Materials Research 37, 622–635 (2022). https://doi.org/10.1557/s43578-021-00461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00461-6

Keywords

Navigation