Skip to main content
Log in

Advances on graphene-based gas sensors for acetone detection based on its physical and chemical attributes

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Highly sensitive acetone gas sensors are used for the purpose of air quality control, projection of environmental patterns, health monitoring programs, and many more. Because of its versatile application, several options for the fabrication of acetone gas sensors have been proposed, and this review will be focusing on graphene as its main component. Within the field of semiconducting, silicon has played an important role especially in sensor manufacturing and the prospect of replacing it with more affordable alternatives such as graphene is being openly considered. Hence, the review serves as the platform to discuss available graphene-based acetone gas detection system by evaluating sensor performance based on its selectivity, sensitivity, sensing performance, and correlates observed and reported mechanisms to possible physical and chemical attributes. To conclude this topic, several suggestions and solutions will be given overcome problems faced by groups dealing with graphene-based sensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Y.L. Pham, J. Beauchamp, Breath biomarkers in diagnostic applications. Molecules 26(18), 5514 (2021)

    CAS  Google Scholar 

  2. Y. Su et al., Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 14(5), 6067–6075 (2020)

    CAS  Google Scholar 

  3. C. Sánchez, J.P. Santos, J. Lozano, Use of electronic noses for diagnosis of digestive and respiratory diseases through the breath. Biosensors 9(1), 35 (2019)

    Google Scholar 

  4. M. Ghazi et al., Selective detection of VOCs using microfluidic gas sensor with embedded cylindrical microfeatures coated with graphene oxide. J. Hazard. Mater. 424, 127566 (2022)

    CAS  Google Scholar 

  5. H.-S. Tsai et al., The elemental 2D materials beyond graphene potentially used as hazardous gas sensors for environmental protection. J. Hazard. Mater. 423, 127148 (2022)

    CAS  Google Scholar 

  6. Z. Zhai et al., Washable and flexible gas sensor based on UiO-66-NH2 nanofibers membrane for highly detecting SO2. Chem. Eng. J. 428, 131720 (2022)

    CAS  Google Scholar 

  7. N.H. Hanh et al., A comparative study on the VOCs gas sensing properties of Zn2SnO4 nanoparticles, hollow cubes, and hollow octahedra towards exhaled breath analysis. Sens. Actuators B Chem. 343, 130147 (2021)

    CAS  Google Scholar 

  8. Hansen, H. and S.B. Wilbur, Toxicological profile for acetone. 1994.

  9. J.G. Smith, Interesting Aldehydes and Ketones, Organic Chemistry (McGraw-Hill, New York, 2011), p. 783

    Google Scholar 

  10. S. Veeralingam et al., Direct growth of FeS2 on paper: A flexible, multifunctional platform for ultra-low cost, low power memristor and wearable non-contact breath sensor for activity detection. Mater. Sci. Semicond. Process. 108, 4910 (2020)

    Google Scholar 

  11. P. Zhang et al., Gas sensors based on ytterbium ferrites nanocrystalline powders for detecting acetone with low concentrations. Sens. Actuators B Chem. 246, 9–19 (2017)

    Google Scholar 

  12. R. Kalidoss, S. Umapathy, Y. Sivalingam, An investigation of GO-SnO2-TiO2 ternary nanocomposite for the detection of acetone in diabetes mellitus patient’s breath. Appl. Surf. Sci. 449, 677–684 (2018)

    CAS  Google Scholar 

  13. T. Saidi et al., Exhaled breath analysis using electronic nose and gas chromatography–mass spectrometry for non-invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy subjects. Sens. Actuators B Chem. 257, 178–188 (2018)

    CAS  Google Scholar 

  14. V. Saasa et al., Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics (Basel, Switzerland) 8(1), 12 (2018)

    Google Scholar 

  15. P. Panigrahi et al., Two-dimensional nitrogenated holey graphene (C2N) monolayer based glucose sensor for diabetes mellitus. Appl. Surf Sci. 573, 151579 (2022)

    CAS  Google Scholar 

  16. T.I. Nasution et al., The sensing mechanism and detection of low concentration acetone using chitosan-based sensors. Sens. Actuators, B Chem. 177, 522–528 (2013)

    CAS  Google Scholar 

  17. N. Makisimovich et al., Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis. Sens. Actuators B Chem. 36(1), 419–421 (1996)

    CAS  Google Scholar 

  18. M. Punginsang et al., Effects of cobalt doping on nitric oxide, acetone and ethanol sensing performances of FSP-made SnO2 nanoparticles. Sens. Actuators B Chem. 210, 589–601 (2015)

    CAS  Google Scholar 

  19. J. Guo et al., Green light-driven acetone gas sensor based on electrospinned CdS nanospheres/Co3O4 nanofibers hybrid for the detection of exhaled diabetes biomarker. J. Colloid Interface Sci. 606, 261–271 (2022)

    CAS  Google Scholar 

  20. G.Y. Toh et al., Tailoring the chemical and structural properties of graphene oxide nanoplatelets synthesised at room temperature with different processing times. J. Phys. Sci. 28(3), 19–40 (2017)

    CAS  Google Scholar 

  21. A. Dato, Graphene synthesized in atmospheric plasmas—a review. J. Mater. Res. 34(1), 214–230 (2019)

    CAS  Google Scholar 

  22. K.Z. Milowska, J.A. Majewski, Graphene-based sensors: theoretical study. J. Phys. Chem. C 118(31), 17395–17401 (2014)

    CAS  Google Scholar 

  23. Z.M. Ao, Q. Jiang, S. Li, AI-doped graphene for ultrasensitive gas detection, in Chemical sensors: simulation and modeling volume 2: conductometric-type sensors. ed. by G. Korotcenkov (Momentum Press, New York, 2012), pp. 379–410

    Google Scholar 

  24. T. Wang et al., A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8(2), 95–119 (2016)

    Google Scholar 

  25. M. Yang et al., Gas sensors based on chemically reduced holey graphene oxide thin films. Nanoscale Res. Lett. 14(1), 218 (2019)

    Google Scholar 

  26. S. Chandrasekaran et al., Carbon aerogel evolution: allotrope, graphene-inspired, and 3D-printed aerogels. J. Mater. Res. 32(22), 4166–4185 (2017)

    CAS  Google Scholar 

  27. D.H. Baek, J. Kim, MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens. Actuators B-Chem. 250, 686–691 (2017)

    CAS  Google Scholar 

  28. R. Kumar et al., MoS2-based nanomaterials for room-temperature gas sensors. Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.201901062

    Article  Google Scholar 

  29. Y. Tong et al., Selectivity of MoS2 gas sensors based on a time constant spectrum method. Sens. Actuators a-Phys. 255, 28–33 (2017)

    CAS  Google Scholar 

  30. R. Kumar et al., Highly selective and reversible NO2 gas sensor using vertically aligned MoS2 flake networks. Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aade20

    Article  Google Scholar 

  31. S.A. Singh et al., Enhanced hydrogen gas sensing characteristics of graphene modified with rubidium (Rb). Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2020.124105

    Article  Google Scholar 

  32. V.M. Aroutiounian, Porous silicon gas sensors, in Semiconductor Gas Sensors. ed. by R. Jaaniso, O.K. Tan (Elsevier, New York, 2013), pp. 408–430

    Google Scholar 

  33. S.Z. Ngah Demon et al., Graphene-based materials in gas sensor applications: a review. Sens. Mater. 32, 759–777 (2020)

    Google Scholar 

  34. U. Latif, F.L. Dickert, Graphene hybrid materials in gas sensing applications. Sensors 15(12), 30504–30524 (2015)

    CAS  Google Scholar 

  35. M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)

    CAS  Google Scholar 

  36. L.G. Guex et al., Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9(27), 9562–9571 (2017)

    CAS  Google Scholar 

  37. K.K.H. De Silva et al., Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)

    Google Scholar 

  38. K. Kim et al., A role for graphene in silicon-based semiconductor devices. Nature 479(7373), 338–344 (2011)

    CAS  Google Scholar 

  39. M. Dresselhaus et al., Chapter 9: electron and phonon scattering, in Solid State Properties: From Bulk to Nano (Graduate Texts in Physics). (Springer, Heidelberg, Berlin, 2018), pp. 185–207

    Google Scholar 

  40. V.B. Mohan et al., Graphene-based materials and their composites: a review on production, applications and product limitations. Compos. B Eng. 142, 200–220 (2018)

    CAS  Google Scholar 

  41. C.-H. Cho, Characterization of Young’s modulus of silicon versus temperature using a “beam deflection” method with a four-point bending fixture. Curr. Appl. Phys. 9(2), 538–545 (2009)

    Google Scholar 

  42. Y. Xiong et al., Co-MOF-74 derived Co3O4/graphene heterojunction nanoscrolls for ppb-level acetone detection. Sens. Actuators B: Chem. 300, 127011 (2019)

    CAS  Google Scholar 

  43. F. Liu et al., Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens. Actuators B Chem. 188, 469–474 (2013)

    CAS  Google Scholar 

  44. B.C. Yao et al. Graphene-based microfiber gas sensor. in 22nd International Conference on Optical Fiber Sensors (OFS) (Beijing, 2012)

  45. H. Zhang et al., Detection of acetone vapor using graphene on polymer optical fiber. J. Nanosci. Nanotechnol. 11(7), 5939–5943 (2011)

    CAS  Google Scholar 

  46. S. MacNaughton et al. Electronic Nose Based on Graphene, Nanotube and Nanowire Chemiresistor Arrays on Silicon. in 10th IEEE Conference on Sensors (2011, Limerick)

  47. A.A. Baharuddin et al., Advances in chemiresistive sensors for acetone gas detection. Mater. Sci. Semicond. Process. 103, 104616 (2019)

    CAS  Google Scholar 

  48. W. Tian, X. Liu, W. Yu, Research progress of gas sensor based on graphene and its derivatives: a review. Appl. Sci. 8(7), 1118 (2018)

    Google Scholar 

  49. D.C. Marcano et al., Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    CAS  Google Scholar 

  50. Y. Yang et al., Graphene-based materials with tailored nanostructures for energy conversion and storage. Mater. Sci. Eng. R. Rep. 102, 1–72 (2016)

    Google Scholar 

  51. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    CAS  Google Scholar 

  52. J. Chen, M. Duan, G. Chen, Continuous mechanical exfoliation of graphene sheets via three-roll mill. J. Mater. Chem. 22(37), 19625–19628 (2012)

    CAS  Google Scholar 

  53. R.C. Sinclair, J.L. Suter, P.V. Coveney, Micromechanical exfoliation of graphene on the atomistic scale. Phys. Chem. Chem. Phys. 21(10), 5716–5722 (2019)

    CAS  Google Scholar 

  54. K.V. Emtsev et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8(3), 203–207 (2009)

    CAS  Google Scholar 

  55. E.G. Acheson. Manufacture of graphite, U.S. PATENTOFICE., Editor (Pennsylvania, 1896)

  56. A. Gupta et al., Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers. Diam. Relat. Mater. 78, 31–38 (2017)

    CAS  Google Scholar 

  57. V. Borovikov, A. Zangwill, Step-edge instability during epitaxial growth of graphene from SiC(0001). Phys. Rev. B (2009). https://doi.org/10.1103/PhysRevB.80.121406

    Article  Google Scholar 

  58. K.E. Whitener, P.E. Sheehan, Graphene synthesis. Diam. Relat. Mater. 46, 25–34 (2014)

    CAS  Google Scholar 

  59. S. Karamat et al., Coalescence of few layer graphene grains grown by chemical vapor deposition and their stacking sequence. J. Mater. Res. 31(1), 46–54 (2016)

    CAS  Google Scholar 

  60. M. Wang et al., A platform for large-scale graphene electronics—CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 25(19), 2746–2752 (2013)

    CAS  Google Scholar 

  61. X. Zheng et al., Graphene-based fibers for the energy devices application: A comprehensive review. Mater. Des. 201, 109476 (2021)

    CAS  Google Scholar 

  62. K. Markandan, J.K. Chin, M.T.T. Tan, Recent progress in graphene based ceramic composites: a review. J. Mater. Res. 32(1), 84–106 (2017)

    CAS  Google Scholar 

  63. X. Qi et al., Size-specified graphene oxide sheets: ultrasonication assisted preparation and characterization. J. Mater. Sci. 49(4), 1785–1793 (2014)

    CAS  Google Scholar 

  64. C.N. Cheaburu-Yilmaz, H.Y. Karasulu, O. Yilmaz, Chapter 13—nanoscaled dispersed systems used in drug-delivery applications, in Polymeric Nanomaterials in Nanotherapeutics. ed. by C. Vasile (Elsevier, New York, 2019), pp. 437–468

    Google Scholar 

  65. S. Ye, J. Feng, The effect of sonication treatment of graphene oxide on the mechanical properties of the assembled films. RSC Adv. 6(46), 39681–39687 (2016)

    CAS  Google Scholar 

  66. X. You et al., Interconnected graphene scaffolds for functional gas sensors with tunable sensitivity. J. Mater. Sci. Technol. 58, 16–23 (2020)

    Google Scholar 

  67. Y. Luan et al., Polyurethane sponges decorated with reduced graphene oxide and silver nanowires for highly stretchable gas sensors. Sens. Actuators B Chem. 265, 609–616 (2018)

    CAS  Google Scholar 

  68. D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics (Wiley, New York, 2010)

    Google Scholar 

  69. W. Cai et al., Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10(5), 1645–1651 (2010)

    CAS  Google Scholar 

  70. J. Zhang et al., Fabrication of conductive graphene oxide-WO3 composite nanofibers by electrospinning and their enhanced acetone gas sensing properties. Sens. Actuators B Chem. 264, 128–138 (2018)

    CAS  Google Scholar 

  71. J. Kaur et al., Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite. Sens. Actuators B Chem. 258, 1022–1035 (2018)

    CAS  Google Scholar 

  72. T.T. Tung et al., Magnetic iron oxide nanoparticles decorated graphene for chemoresistive gas sensing: the particle size effects. J. Colloid Interface Sci. 539, 315–325 (2019)

    CAS  Google Scholar 

  73. O.A. Jianu, G.F. Naterer, M.A. Rosen, 19—hydrogen cogeneration with generation IV nuclear power plants, in Handbook of Generation IV Nuclear Reactors. ed. by I.L. Pioro (Woodhead Publishing, Cambridge, 2016), pp. 637–659

    Google Scholar 

  74. H. Huang et al., Oxygen density dependent band gap of reduced graphene oxide. J. Appl. Phys 111(5), 054317 (2012)

    Google Scholar 

  75. S. Biswas, D. Sen, M. Mukherjee, Bandgap engineering in iron doped graphene nanosheets: electrical performance boosting for application in nano-electronics. Beilstein Arch. (2020). https://doi.org/10.3762/bxiv.2020.116.v1

    Article  Google Scholar 

  76. B. Sawicki et al., Correlation between the band-gap energy and the electrical conductivity in MPr 2 W _2 O 10 tungstates (where M = Cd Co, Mn). Acta Phys. Polon. A 129, A-94 (2016)

    CAS  Google Scholar 

  77. I.W. Frank et al., Mechanical properties of suspended graphene sheets. J. Vacuum Sci. Technol. B 25(6), 2558–2561 (2007)

    CAS  Google Scholar 

  78. S.K. Mishra et al., SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuators B Chem. 199, 190–200 (2014)

    CAS  Google Scholar 

  79. N. Maluf, An introduction to microelectromechanical systems engineering. Meas. Sci. Technol. 13(2), 229–229 (2002)

    Google Scholar 

  80. A.A.S. Rabih et al., MEMS-based acetone vapor sensor for non-invasive screening of diabetes. IEEE Sens. J. 18(23), 9486–9500 (2018)

    CAS  Google Scholar 

  81. M. Kaisti, Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 98, 437–448 (2017)

    CAS  Google Scholar 

  82. Y. Hu et al., Lychee-like ZnO/ZnFe2O4 core-shell hollow microsphere for improving acetone gas sensing performance. Ceram. Int. 46(5), 5960–5967 (2020)

    CAS  Google Scholar 

  83. H. Zhang et al., Enhanced acetone sensing characteristics of ZnO/graphene composites. Sensors (Basel, Switzerland) 16(11), 1876 (2016)

    Google Scholar 

  84. D. Ding et al., Chemically functionalized 3D reticular graphene oxide frameworks decorated with MOF-derived Co3O4: towards highly sensitive and selective detection to acetone. Sens. Actuators B Chem. 259, 289–298 (2018)

    CAS  Google Scholar 

  85. S.-J. Choi et al., Bi-functional co-sensitization of graphene oxide sheets and Ir nanoparticles on p-type Co3O4 nanofibers for selective acetone detection. J. Mater. Chem. B 2(41), 7160–7167 (2014)

    CAS  Google Scholar 

  86. S. Rathinavel, G. Balaji, S. Vadivel, High performance ethanol and acetone gas sensing behavior of FeCo2O4/graphene hybrid sensors prepared by facile hydrothermal route. Optik 223, 165571 (2020)

    CAS  Google Scholar 

  87. S. Sun et al., 2D/2D graphene nanoplatelet-tungsten trioxide hydrate nanocomposites for sensing acetone. ACS Appl Nano Mater. 2(3), 1313–1324 (2019)

    CAS  Google Scholar 

  88. V. Bochenkov, G. Sergeev, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Sensors 3, 31–52 (2010)

    CAS  Google Scholar 

  89. L. Chen et al., Fully gravure-printed WO3/Pt-decorated rGO nanosheets composite film for detection of acetone. Sens. Actuators B Chem. 255, 1482–1490 (2018)

    CAS  Google Scholar 

  90. M.H. Darvishnejad et al., Highly sensitive and selective ethanol and acetone gas sensors by adding some dopants (Mn, Fe Co, Ni) onto hexagonal ZnO plates. RSC Adv. 6(10), 7838–7845 (2016)

    CAS  Google Scholar 

  91. L. Gao et al., Synthesis of SnO2 nanoparticles for formaldehyde detection with high sensitivity and good selectivity. J. Mater. Res. 35(16), 2208–2217 (2020)

    CAS  Google Scholar 

  92. D. Zhang et al., Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5(4), 3016–3022 (2015)

    CAS  Google Scholar 

  93. Y. Su et al., A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis. Nano Energy 74, 104941 (2020)

    CAS  Google Scholar 

  94. Y.T. Ma et al., One-pot hydrothermal method synthesised SnS/rGO nanocomposite under PVDF bonding for high-performance acetone gas sensor. Mater. Sci. Eng. B 263, 4861 (2021)

    Google Scholar 

  95. R. Zhang et al., A yolk-double-shelled heterostructure-based sensor for acetone detecting application. J. Colloid Interface Sci. 539, 490–496 (2019)

    CAS  Google Scholar 

  96. L. Liu et al., Production of high quality single- or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane. Chem. Commun. 49(72), 7890–7892 (2013)

    CAS  Google Scholar 

  97. K. Staszek et al., Microwave system with sensor utilizing GO-based gas-sensitive layer and its application to acetone detection. Sens. Actuators B: Chem. 297, 6699 (2019)

    Google Scholar 

  98. T. Lin et al., The morphologies of the semiconductor oxides and their gas-sensing properties. Sensors (Basel, Switzerland) 17(12), 2779 (2017)

    Google Scholar 

  99. K. Wu et al., Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors. Beilstein J. Nanotechnol. 10, 2516–2526 (2019)

    CAS  Google Scholar 

  100. K.S. Novoselov et al., A roadmap for graphene. Nature 490(7419), 192–200 (2012)

    CAS  Google Scholar 

  101. J. Hass et al., Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 89(14), 143106 (2006)

    Google Scholar 

  102. T. Soltani, B.K. Lee, A benign ultrasonic route to reduced graphene oxide from pristine graphite. J. Colloid Interface Sci. 486, 337–343 (2017)

    CAS  Google Scholar 

  103. M.G. Pastore Carbone et al., Production and mechanical characterization of graphene micro-ribbons. J. Compos. Sci. 3(2), 42 (2019)

    Google Scholar 

  104. J.W. Suk et al., Mechanical properties of monolayer graphene oxide. ACS Nano 4(11), 6557–6564 (2010)

    CAS  Google Scholar 

  105. M. Orlita et al., Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101(26), 267601 (2008)

    CAS  Google Scholar 

  106. B. Zhang et al., Interfacial engineering in PDMS/graphene composites via anchoring polypyrrole nanowires to enhance its electro-photo thermal performance. Carbon 174, 10–23 (2021)

    CAS  Google Scholar 

  107. L. Chen et al., Toward high performance graphene fibers. Nanoscale 5(13), 5809–5815 (2013)

    CAS  Google Scholar 

  108. X. Wang et al., Highly stretchable and conductive core-sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors. Chem. Mater. 27(20), 6969–6975 (2015)

    CAS  Google Scholar 

  109. H. Gudarzifar, A. Rezvani, S. Sabbaghi, Morphological investigation of graphene oxide/polyacrylamide super-elastic nanocomposite by a solution polymerization process with enhanced rheological property and thermal conductivity. Int. J. Nano Dimension 12(1), 20–36 (2021)

    CAS  Google Scholar 

  110. J. Kaur et al., Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite. Chem. Phys. Lett. 701, 115–125 (2018)

    CAS  Google Scholar 

  111. D.Y. Nadargi et al., A greener approach towards the development of graphene–Ag loaded ZnO nanocomposites for acetone sensing applications. RSC Adv. 9(58), 33602–33606 (2019)

    CAS  Google Scholar 

  112. Y. Gao et al., Microwave-assisted synthesis of hierarchically porous Co3O4/rGO nanocomposite for low-temperature acetone detection. J. Colloid Interface Sci. 594, 690–701 (2021)

    CAS  Google Scholar 

  113. S.-J. Choi et al., Selective Detection of Acetone and Hydrogen Sulfide for the Diagnosis of Diabetes and Halitosis Using SnO2 Nanofibers Functionalized with Reduced Graphene Oxide Nanosheets. ACS Appl. Mater. Interfaces. 6(4), 2588–2597 (2014)

    CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by University of Malaya (UM) under the Impact-Oriented Interdisciplinary Research Programme (Grant No. IIRG018D-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabilah Mohammad Yusof.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Yusof, N., Ibrahim, S. & Rozali, S. Advances on graphene-based gas sensors for acetone detection based on its physical and chemical attributes. Journal of Materials Research 37, 405–423 (2022). https://doi.org/10.1557/s43578-021-00456-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00456-3

Keywords

Navigation