Skip to main content

Role of Graphene-Based Materials in Gas Sensing Applications: From Synthesis to Device Fabrication

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Detection of contaminants including inorganic gases, semi-volatile/volatile organic compounds, heavy metals produced by industries, and automobile emissions is necessary in many areas of human activity. Fabrication of highly efficient gas sensors is of great importance today to improve the quality of air. As a gas sensor, material based on graphene has gained attractive attention in field of gas sensors because of the high specific surface area. Graphene and reduced graphene oxide (RGO) are good sensing materials but presence of functional groups on surface of graphene oxide makes it an attractive gas sensing element. In this chapter, authors focus on the recent development in the fabrication of graphene-based gas sensors having 2D hexagonal conjugated structures, high conductivity, and high surface-to-volume ratio. The authors have summarized significant findings on graphene and materials based on it for the detection of toxic gases by using distinct fabrication techniques. Upon exposure to certain gases, changes in electronic and optical properties of graphene and materials based on it are observed. This study focuses on the functionalization effect on the overall sensing performance of materials based on graphene. To make graphene-based materials sensitive and selective toward analyte gases, inclusion of metal oxide nanocomposites and nanoparticles is an effective route. In this chapter, our efforts are in the direction to discuss graphene-based gas sensors designed by different methods for future applications. In addition to this, we discussed the details of designed graphene-based gas sensor response to the sensor system and how they are increasing detection efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner T et al (2013) Mesoporous materials as gas sensors. Chem Soc Rev 42(9):4036–4053

    Google Scholar 

  2. Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electro synthesis and applications. Chem Soc Rev 38(8):2397–2409

    Article  CAS  PubMed  Google Scholar 

  3. Tian W, Liu X, Wenbo Y (2018) Research progress of gas sensor based on graphene and its derivatives: a review. Appl Sci 8(7):1118

    Article  Google Scholar 

  4. Vaseashta A et al (2007) Nanostructures in environmental pollution detection, monitoring, and remediation. Sci Technol Adv Mater 8(1–2):47

    Google Scholar 

  5. Zee F, Judy JW (2001) Micro machined polymer-based chemical gas sensor array. Sens Actuators, B Chem 72(2):120–128

    Article  CAS  Google Scholar 

  6. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators, B Chem 107(1):209–232

    Article  CAS  Google Scholar 

  7. Kadhim IH, Abu Hassan H, Abdullah QN (2016) Hydrogen gas sensor based on nano crystalline SnO2 thin film grown on bare Si substrates. Nano-micro Lett 8(1):20–28

    Google Scholar 

  8. Mohammadi MR, Fray DJ (2009) Development of nano crystalline TiO2–Er2O3 and TiO2–Ta2O5 thin film gas sensors: controlling the physical and sensing properties. Sens Actuators, B Chem 141(1):76–84

    Article  CAS  Google Scholar 

  9. Sun P et al (2011) Porous SnO2 hierarchical nanosheets: hydrothermal preparation, growth mechanism, and gas sensing properties. CrystEngComm 13(11):3718–3724

    Google Scholar 

  10. Chen Z et al (2005) The role of metal−nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett 5(7):1497–1502

    Google Scholar 

  11. Neri G (2015) First fifty years of chemo resistive gas sensors. Chemo Sens 3(1):1–20

    CAS  Google Scholar 

  12. Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5(2):128–142

    Article  CAS  Google Scholar 

  13. Llobet E (2013) Gas sensors using carbon nanomaterials: a review. Sens Actuators, B Chem 179:32–45

    Article  CAS  Google Scholar 

  14. Gomez De Arco L et al (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5):2865–2873

    Google Scholar 

  15. Britnell L et al (2012) Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett 12(3):1707–1710

    Google Scholar 

  16. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Google Scholar 

  17. Ratinac KR et al (2010) Toward ubiquitous environmental gas sensors capitalizing on the promise of graphene. Environ Sci Technol 44(4):1167–1176

    Google Scholar 

  18. Lin Y-M, Avouris P (2008) Strong suppression of electrical noise in bilayer graphene nano devices. Nano Lett 8(8):2119–2125

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Bai H, Shi G (2011) Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation. J Am Chem Soc 133(16):6338–6342

    Article  CAS  PubMed  Google Scholar 

  20. Xu Y, Shi G (2011) Assembly of chemically modified graphene: methods and applications. J Mater Chem 21(10):3311–3323

    Article  CAS  Google Scholar 

  21. Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23(9):1089–1115

    Article  CAS  PubMed  Google Scholar 

  22. Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators, B Chem 173:1–21

    Article  CAS  Google Scholar 

  23. Calvi A et al (2016) Recognizing physisorption and chemisorption in carbon nanotubes gas sensors by double exponential fitting of the response. Sensors 16(5):731

    Google Scholar 

  24. Deji R, Choudhary BC, Sharma RK (2021) Novel hydrogen cyanide gas sensor: a simulation study of graphene nanoribbon doped with boron and phosphorus. Phys E: Low-Dimen Syst Nanostruct 134:114844

    Google Scholar 

  25. Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1(35):10078–10091

    Article  CAS  Google Scholar 

  26. Seiyama T et al (1962) A new detector for gaseous components using semi conductive thin films. Anal Chem 34(11):1502–1503

    Google Scholar 

  27. Shaver PJ (1967) Activated tungsten oxide gas detectors. Appl Phys Lett 11(8):255–257

    Article  CAS  Google Scholar 

  28. Arafat MM et al (2012) Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12(6):7207–7258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Omidvar A, Mohajeri A (2014) Edge-functionalized graphene nanoflakes as selective gas sensors. Sens Actuators, B Chem 202:622–630

    Article  CAS  Google Scholar 

  30. Gisele I, Doll T, Burgmair M (2001) Low power gas detection with FET sensors. Sens Actuators, B Chem 78(1–3):19–25

    Article  Google Scholar 

  31. Chang J et al (2013) Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective protein detection. Biosens Bioelectron 42:186–192

    Google Scholar 

  32. Lu Y et al (2010) High‐on/off‐ratio graphene nano constriction field‐effect transistor. Small 6(23):2748–2754

    Google Scholar 

  33. Antonova IV et al (2011) Extremely high response of electrostatically exfoliated few layer graphene to ammonia adsorption. Nanotechnology 22(28):285502

    Article  CAS  PubMed  Google Scholar 

  34. Gautam M, Jayatissa AH (2012) Graphene based field effect transistor for the detection of ammonia. J Appl Phys 112(6):064304

    Article  Google Scholar 

  35. Jayanthi S et al (2016) Tailored nitrogen dioxide sensing response of three-dimensional graphene foam. Sens Actuators B: Chem 222:21–27

    Google Scholar 

  36. Lu G et al (2011) Ultrafast room temperature NH3 sensing with positively gated reduced graphene oxide field-effect transistors. Chem Commun 47(27):7761–7763

    Google Scholar 

  37. Cittadini M et al (2014) Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor. Carbon 69:452–459

    Google Scholar 

  38. Rifat AA et al (2015) Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5):11499–11510

    Google Scholar 

  39. Iyer GRS et al (2014) Large-area, freestanding, single-layer graphene–gold: a hybrid plasmonic nanostructure. ACS Nano 8(6):6353–6362

    Google Scholar 

  40. Cretescu I, Lutic D, Manea LR (2017) Electrochemical sensors for monitoring of indoor and outdoor air pollution. In: Electrochemical sensors technology. Intech Open, London, UK, p 65

    Google Scholar 

  41. Novoselov KS et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Google Scholar 

  42. Schedin F et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    Google Scholar 

  43. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Google Scholar 

  44. Stankovich S et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Google Scholar 

  45. Hwang S et al (2012) Chemical vapor sensing properties of graphene based on geometrical evaluation. Curr Appl Phys 12(4):1017–1022

    Google Scholar 

  46. Ko G et al (2010) Graphene-based nitrogen dioxide gas sensors. Curr Appl Phys 10(4):1002–1004

    Article  Google Scholar 

  47. Romero HE et al (2009) Adsorption of ammonia on graphene. Nanotechnology 20(24):245501

    Google Scholar 

  48. Yoon HJ et al (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B: Chem 157(1):310–313

    Google Scholar 

  49. Wintterlin J, Bocquet M-L (2009) Graphene on metal surfaces. Surf Sci 603(10–12):1841–1852

    Google Scholar 

  50. Kalita G, Wakita K, Umeno M (2012) Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application. RSC Adv 2(7):2815–2820

    Article  CAS  Google Scholar 

  51. Suk JW et al (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924

    Google Scholar 

  52. Levendorf MP et al (2009) Transfer-free batch fabrication of single layer graphene transistors. Nano Lett 9(12):4479–4483

    Google Scholar 

  53. Gautam M, Jayatissa AH, Sumanasekera GU (2010) Synthesis and characterization of transferable graphene by CVD method. In: 2010 IEEE nanotechnology materials and devices conference. IEEE

    Google Scholar 

  54. Bonaccorso F et al (2010) Graphene photonics and optoelectronics. Nat Photon 4(9):611–622

    Google Scholar 

  55. Varghese SS et al (2015) Recent advances in graphene based gas sensors. Sens Actuators B: Chem 218:160–183

    Google Scholar 

  56. Varghese SS et al (2015) Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3):651–687

    Google Scholar 

  57. Dan Y et al (2009) Intrinsic response of graphene vapor sensors. Nano Lett 9(4):1472–1475

    Google Scholar 

  58. Nemade KR, Waghuley SA (2013) Chemiresistive gas sensing by few-layered graphene. J Electron Mater 42:2857–2866

    Article  CAS  Google Scholar 

  59. Fattah A, Khatami S (2014) Selective H2S gas sensing with a graphene/n-Si schottky diode. IEEE Sens J 14(11):4104–4108

    Article  CAS  Google Scholar 

  60. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    Article  CAS  PubMed  Google Scholar 

  61. Prezioso S, Perrozzi F, Giancaterini L, Cantalini C, Treossi E, Palermo V, Nardone M, Santucci S, Ottaviano L (2013) Graphene oxide as a practical solution to high sensitivity gas sensing. J Phys Chem C 117:10683–10690

    Article  CAS  Google Scholar 

  62. Wang J et al (2014) Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature. Sens Actuators B: Chem 194:296–302

    Google Scholar 

  63. Drewniak S et al (2013) Investigations of SAW structures with oxide graphene layer to detection of selected gases. Acta Physica Polonica A 124(3)

    Google Scholar 

  64. Bi H et al (2013) Ultrahigh humidity sensitivity of graphene oxide. Sci Rep 3(1):1–7

    Google Scholar 

  65. Choi YR et al (2015) Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon 91:178–187

    Google Scholar 

  66. Pustelny T et al (2013) The sensitivity of sensor structures with oxide graphene exposed to selected gaseous atmospheres. Bull Polish Acad Sci: Tech Sci:705–710

    Google Scholar 

  67. Bourlinos AB et al (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19(15):6050–6055

    Google Scholar 

  68. Shen J et al (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21(15):3514–3520

    Google Scholar 

  69. Mattevi C et al (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Func Mater 19(16):2577–2583

    Google Scholar 

  70. Matsumoto Y et al (2010) Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl Mater Interfaces 2(12):3461–3466

    Google Scholar 

  71. Zhou Y et al (2010) Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22(1):67–71

    Google Scholar 

  72. Prezioso S et al (2012) Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction. Langmuir 28(12):5489–5495

    Article  CAS  PubMed  Google Scholar 

  73. Lu G, Ocola LE, Chen J (2009) Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44):445502

    Article  PubMed  Google Scholar 

  74. Lu G et al (2011) Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 5(2):1154–1164

    Google Scholar 

  75. Fowler JD et al (209) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306

    Google Scholar 

  76. Dua V et al (2010) All‐organic vapor sensor using inkjet‐printed reduced graphene oxide. Angew Chem Int Ed 49(12):2154–2157

    Google Scholar 

  77. Hassinen J et al (2013) Low-cost reduced graphene oxide-based conductometric nitrogen dioxide-sensitive sensor on paper. Anal Bioanal Chem 405(11):3611–3617

    Google Scholar 

  78. Hu N et al (2013) Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25(2):025502

    Google Scholar 

  79. Gutés A et al (2012) Graphene decoration with metal nanoparticles: towards easy integration for sensing applications. Nanoscale 4(2):438–440

    Google Scholar 

  80. Chung MG et al (2012) Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens Actuators B: Chem 169:387–392

    Google Scholar 

  81. Parmar M, Balamurugan C, Lee D-W (2013) PANI and graphene/PANI nanocomposite films—comparative toluene gas sensing behavior. Sensors 13(12):16611–16624

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ye Z et al (2014) The investigation of reduced graphene oxide/P3HT composite films for ammonia detection. Integr Ferroelectr 154(1):73–81

    Google Scholar 

  83. Zhou L et al (2013) Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 5(4):1564–1569

    Google Scholar 

  84. Liu S et al (2014) Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens Actuators B: Chem 202:272–278

    Google Scholar 

  85. Niu F et al (2014) Phosphorus doped graphene nanosheets for room temperature NH3 sensing. New J Chem 38(6):2269–2272

    Google Scholar 

  86. Niu F et al (2013) Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. J Mater Chem A 1(20):6130–6133

    Google Scholar 

  87. Liang C, Wang YL, Li T (2015) Sulfur-doping in graphene and its high selectivity gas sensing in NO2. In: 2015 Transducers-2015 18th international conference on solid-state sensors, actuators and microsystems (transducers). IEEE

    Google Scholar 

  88. Lv R et al (2015) Ultrasensitive gas detection of large-area boron-doped graphene. Proc Natl Acad Sci 112(47):14527–14532

    Google Scholar 

  89. Cho S et al (2014) Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection. Nanoscale 6(24):15181–15195

    Google Scholar 

  90. Choi S-J et al (2014) Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater interfaces 6(4):2588–2597

    Google Scholar 

  91. Arsat R et al (2009) Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem Phys Lett 467(4–6):344–347

    Google Scholar 

  92. Zhang Z et al (2011) Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J Mater Chem 21(43):17360–17365

    Google Scholar 

  93. Wu Z et al (2013) Enhanced sensitivity of ammonia sensor using graphene/polyaniline nano composite. Sens Actuators B: Chem 178:485–493

    Google Scholar 

  94. Lee C et al (2012) Graphene-based flexible NO2 chemical sensors. Thin Solid Films 520(16):5459–5462

    Google Scholar 

  95. Dong Y-L et al (2014) Highly selective NO2 sensor at room temperature based on nanocomposites of hierarchical nanosphere-like α-Fe2O3 and reduced graphene oxide

    Google Scholar 

  96. Pearce R et al (2011) Epitaxially grown graphene based gas sensors for ultrasensitive NO2 detection. Sens Actuators B: Chem 155(2):451–455

    Google Scholar 

  97. Su P-G, Peng S-L (2015) Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132:398–405

    Article  CAS  PubMed  Google Scholar 

  98. Zhang Z et al (2015) Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale 7(22):10078–10084

    Google Scholar 

  99. Nemade KR, Waghuley SA (2014) Highly responsive carbon dioxide sensing by Graphene/Al2O3 quantum dots composites at low operable temperature. Indian J Phys 88(6):577–583

    Article  CAS  Google Scholar 

  100. Nemade KR, Waghuley SA (2014) Role of defects concentration on optical and carbon dioxide gas sensing properties of Sb2O3/graphene composites. Opt Mater 36(3):712–716

    Article  CAS  Google Scholar 

  101. Kaniyoor A et al (2009) Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1(3):382–386

    Google Scholar 

  102. Li W et al (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5(9):6955–6961

    Google Scholar 

  103. Huang L et al (2014) Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl Mater Interfaces 6(10):7426–7433

    Google Scholar 

  104. Wang J et al (2015) Dielectrophoretic assembly of Pt nanoparticle-reduced graphene oxide nano hybrid for highly-sensitive multiple gas sensor. Sens Actuators B: Chem 220:755–761

    Google Scholar 

  105. Mao S et al (2012) Tuning gas-sensing properties of reduced graphene oxide using tin oxide Nano crystals. J Mater Chem 22(22):11009–11013

    Google Scholar 

  106. Zhang H et al (2014) SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens Actuators B: Chem 190:472–478

    Google Scholar 

  107. Singh G et al (2012) ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon 50(2):385–394

    Google Scholar 

  108. Uddin ASMI, Chung G-S (2014) Synthesis of highly dispersed ZnO Nano particles on graphene surface and their acetylene sensing properties. Sens Actuator B: Chem 205:338–344

    Google Scholar 

  109. Mangu R, Rajaputra S, Singh VP (2011) MWCNT–polymer composites as highly sensitive and selective room temperature gas sensors. Nanotechnology 22(21):215502

    Article  PubMed  Google Scholar 

  110. Srivastava S et al (2010) Study of chemiresistor type CNT doped polyaniline gas sensor. Syn Metals 160(5–6):529–534

    Google Scholar 

  111. Huang X et al (2012) Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J Mater Chem 22(42):22488–22495

    Google Scholar 

  112. Xie T et al (2014) Thin film transistors gas sensors based on reduced graphene oxide poly (3-hexylthiophene) bilayer film for nitrogen dioxide detection. Chem Phys Lett 614:275–281

    Google Scholar 

  113. Hong J et al (2015) A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. ACS Appl Mater Interfaces 7(6):3554–3561

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deji, R., Rahul, Choudhary, B.C., Sharma, R.K. (2023). Role of Graphene-Based Materials in Gas Sensing Applications: From Synthesis to Device Fabrication. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_18

Download citation

Publish with us

Policies and ethics