Skip to main content
Log in

High densification of BaZrS3 powder inspired by the cold-sintering process

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on the sintering of powders of the chalcogenide perovskite BaZrS3 at low and intermediate temperatures. BaZrS3 is the most widely studied chalcogenide perovskite semiconductor. Most experimental results to-date have been made using loose powder and cold-pressed pellets (i.e. green bodies). Straightforward sintering methods to achieve dense ceramics are challenging because BaZrS3 decomposes and oxidizes in air above 550 °C. Here, we take inspiration from the cold-sintering process to develop a low-to-intermediate densification process for chalcogenide perovskites. Typical additives for cold sintering of oxides do not accelerate BaZrS3 sintering. At higher temperature, iodine is remarkably successful as an additive to accelerate densification. We achieve density up to 92% for sintering at 450 °C and 425 MPa. Our sintering process does not cause significant oxidation. Thermogravimetric measurements reveal the formation of an intergranular phase. Impedance spectroscopy measurements reveal that the bulk dielectric properties are unaffected by ball milling and subsequent sintering.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Filippone, B. Zhao, S. Niu, N.Z. Koocher, D. Silevitch, I. Fina et al., Discovery of highly polarizable semiconductors BaZrS3 and Ba3Zr2S7. Phys. Rev. Mater. 4, 091601 (2020). https://doi.org/10.1103/PhysRevMaterials.4.091601

    Article  CAS  Google Scholar 

  2. R. Jaramillo, J. Ravichandran, In praise and in search of highly-polarizable semiconductors: technological promise and discovery strategies. APL Mater. 7, 100902 (2019). https://doi.org/10.1063/1.5124795

    Article  CAS  Google Scholar 

  3. Y. Nishigaki, T. Nagai, M. Nishiwaki, T. Aizawa, M. Kozawa, K. Hanzawa et al., Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Sol. RRL (2020). https://doi.org/10.1002/solr.201900555

    Article  Google Scholar 

  4. I. Sadeghi, K. Ye, M. Xu, Y. Li, J.M. LeBeau, R. Jaramillo, Making BaZrS3 chalcogenide perovskite thin films by molecular beam epitaxy. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202105563

    Article  Google Scholar 

  5. Y.-Y. Sun, M.L. Agiorgousis, P. Zhang, S. Zhang, Chalcogenide perovskites for photovoltaics. Nano Lett 15, 581–585 (2015). https://doi.org/10.1021/nl504046x

    Article  CAS  Google Scholar 

  6. X. Wei, H. Hui, C. Zhao, C. Deng, M. Han, Z. Yu et al., Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics. Nano Energy 68, 104317 (2020). https://doi.org/10.1016/j.nanoen.2019.104317

    Article  CAS  Google Scholar 

  7. T. Gupta, D. Ghoshal, A. Yoshimura, S. Basu, P.K. Chow, A.S. Lakhnot et al., An environmentally stable and lead-free chalcogenide perovskite. Cond-Mat. Physicsphys. 30, 2001387 (2019)

    Google Scholar 

  8. C. Comparotto, A. Davydova, T. Ericson, L. Riekehr, M.V. Moro, T. Kubart et al., Chalcogenide perovskite BaZrS3: thin film growth by sputtering and rapid thermal processing. ACS Appl Energy Mater. (2020). https://doi.org/10.1021/acsaem.9b02428

    Article  Google Scholar 

  9. J. Pandey, D. Ghoshal, D. Dey, T. Gupta, A. Taraphder, N. Koratkar et al., Local ferroelectric polarization in antiferroelectric chalcogenide perovskite BaZrS3 thin films. Phys Rev B 102, 205308 (2020). https://doi.org/10.1103/PhysRevB.102.205308

    Article  CAS  Google Scholar 

  10. H. Shaili, M. Beraich, A. El Hat, M. Ouafi, E.M. Salmani, R. Essajai et al., Synthesis of the Sn-based CaSnS3 chalcogenide perovskite thin film as a highly stable photoabsorber for optoelectronic applications. J Alloys Compd 851, 156790 (2021). https://doi.org/10.1016/j.jallcom.2020.156790

    Article  CAS  Google Scholar 

  11. V.K. Ravi, S.H. Yu, P.K. Rajput, C. Nayak, D. Bhattacharyya, D.S. Chung et al., Colloidal BaZrS3 chalcogenide perovskite nanocrystals for thin film device fabrication. Nanoscale 13, 1616–1623 (2021). https://doi.org/10.1039/D0NR08078K

    Article  CAS  Google Scholar 

  12. Z. Yu, X. Wei, Y. Zheng, H. Hui, M. Bian, S. Dhole et al., Chalcogenide perovskite BaZrS3 thin-film electronic and optoelectronic devices by low temperature processing. Nano Energy 85, 105959 (2021). https://doi.org/10.1016/j.nanoen.2021.105959

    Article  CAS  Google Scholar 

  13. J.A. Márquez, M. Rusu, H. Hempel, I.Y. Ahmet, M. Kölbach, I. Simsek et al., BaZrS3 chalcogenide perovskite thin films by H2S sulfurization of oxide precursors. J Phys Chem Lett 12, 2148–2153 (2021). https://doi.org/10.1021/acs.jpclett.1c00177

    Article  CAS  Google Scholar 

  14. S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng et al., Chalcogenide perovskites: an emerging class of ionic semiconductors. Nano Energy 22, 129–135 (2016). https://doi.org/10.1016/j.nanoen.2016.02.020

    Article  CAS  Google Scholar 

  15. S. Nayir, D.R. Waryoba, R. Rajagopalan, C. Arslan, C.A. Randall, Cold Sintering of a covalently bonded MoS2/graphite composite as a high capacity Li–Ion electrode. ChemNanoMat 4, 1088–1094 (2018). https://doi.org/10.1002/cnma.201800342

    Article  CAS  Google Scholar 

  16. N.A. Moroz, C. Bauer, L. Williams, A. Olvera, J. Casamento, A.A. Page et al., Insights on the synthesis, crystal and electronic structures, and optical and thermoelectric properties of Sr1-xSbxHfSe3 orthorhombic perovskite. Inorg Chem 57, 7402–7411 (2018). https://doi.org/10.1021/acs.inorgchem.8b01038

    Article  CAS  Google Scholar 

  17. S. Niu, J. Milam-Guerrero, Y. Zhou, K. Ye, B. Zhao, B.C. Melot et al., Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 33, 4135–4143 (2018). https://doi.org/10.1557/jmr.2018.419

    Article  CAS  Google Scholar 

  18. J. Guo, H. Guo, A.L. Baker, M.T. Lanagan, E.R. Kupp, G.L. Messing et al., Cold sintering: a paradigm shift for processing and integration of ceramics. Angew. Chem. Int. Ed. 55, 11457–11461 (2016). https://doi.org/10.1002/anie.201605443

    Article  CAS  Google Scholar 

  19. S. Grasso, M. Biesuz, L. Zoli, G. Taveri, A.I. Duff, D. Ke et al., A review of cold sintering processes. Adv. Appl. Ceram. 119, 115–143 (2020). https://doi.org/10.1080/17436753.2019.1706825

    Article  CAS  Google Scholar 

  20. J.-P. Maria, X. Kang, R.D. Floyd, E.C. Dickey, H. Guo, J. Guo et al., Cold sintering: current status and prospects. J. Mater. Res. 32, 3205–3218 (2017). https://doi.org/10.1557/jmr.2017.262

    Article  CAS  Google Scholar 

  21. H. Guo, J. Guo, A. Baker, C.A. Randall, Hydrothermal-assisted cold sintering process: a new guidance for low-temperature ceramic sintering. ACS Appl. Mater. Interfaces 8, 20909–20915 (2016). https://doi.org/10.1021/acsami.6b07481

    Article  CAS  Google Scholar 

  22. X. Kang, R. Floyd, S. Lowum, M. Cabral, E. Dickey, J.-P. Maria, Mechanism studies of hydrothermal cold sintering of zinc oxide at near room temperature. J. Am. Ceram. Soc. 102, 4459–4469 (2019). https://doi.org/10.1111/jace.16340

    Article  CAS  Google Scholar 

  23. H. Guo, A. Baker, J. Guo, C.A. Randall, Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics. J. Am. Ceram. Soc. 99, 3489–3507 (2016). https://doi.org/10.1111/jace.14554

    Article  CAS  Google Scholar 

  24. S. Xin, Y. You, S. Wang, H.-C. Gao, Y.-X. Yin, Y.-G. Guo, Solid-State lithium metal batteries promoted by nanotechnology: progress and prospects. ACS Energy Lett. 2, 1385–1394 (2017). https://doi.org/10.1021/acsenergylett.7b00175

    Article  CAS  Google Scholar 

  25. D. Wang, K. Tsuji, C.A. Randall, S. Trolier-McKinstry, Model for the cold sintering of lead zirconate titanate ceramic composites. J. Am. Ceram. Soc. 103, 4894–4902 (2020). https://doi.org/10.1111/jace.17269

    Article  CAS  Google Scholar 

  26. X. Kang, R. Floyd, S. Lowum, D. Long, E. Dickey, J.-P. Maria, Cold sintering with dimethyl sulfoxide solutions for metal oxides. J Mater Sci 54, 7438–7446 (2019). https://doi.org/10.1007/s10853-019-03410-1

    Article  CAS  Google Scholar 

  27. T. Sada, Z. Fan, A. Ndayishimiye, K. Tsuji, S.H. Bang, Y. Fujioka et al., In situ doping of BaTiO3 and visualization of pressure solution in flux-assisted cold sintering. J. Am. Ceram. Soc. 104, 96–104 (2021). https://doi.org/10.1111/jace.17461

    Article  CAS  Google Scholar 

  28. Y. Wang, N. Sato, K. Yamada, T. Fujino, Synthesis of BaZrS3 in the presence of excess sulfur. J. Alloys Compd. 311, 214–223 (2000). https://doi.org/10.1016/S0925-8388(00)01134-8

    Article  CAS  Google Scholar 

  29. J.-H. Seo, H. Nakaya, Y. Takeuchi, Z. Fan, H. Hikosaka, R. Rajagopalan et al., Broad temperature dependence, high conductivity, and structure-property relations of cold sintering of LLZO-based composite electrolytes. J. Eur. Ceram. Soc. 40, 6241–6248 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.050

    Article  CAS  Google Scholar 

  30. Y. Wang, N. Sato, T. Fujino, Synthesis of BaZrS3 by short time reaction at lower temperatures. J. Alloys Compd. 327, 104–112 (2001). https://doi.org/10.1016/S0925-8388(01)01553-5

    Article  CAS  Google Scholar 

  31. S. Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier et al., Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2017). https://doi.org/10.1002/adma.201604733

    Article  Google Scholar 

  32. S. Niu, D. Sarkar, K. Williams, Y. Zhou, Y. Li, E. Bianco et al., Optimal bandgap in a 2D Ruddlesden-popper perovskite chalcogenide for single-junction solar cells. Chem. Mater. 30, 4882–4886 (2018). https://doi.org/10.1021/acs.chemmater.8b01707

    Article  CAS  Google Scholar 

  33. M. Biesuz, G. Taveri, A.I. Duff, E. Olevsky, D. Zhu, C. Hu et al., A theoretical analysis of cold sintering. Adv. Appl. Ceram. 119, 75–89 (2020). https://doi.org/10.1080/17436753.2019.1692173

    Article  CAS  Google Scholar 

  34. H. Guo, A. Baker, J. Guo, C.A. Randall, Protocol for ultralow-temperature ceramic sintering: an integration of nanotechnology and the cold sintering process. ACS Nano 10, 10606–10614 (2016). https://doi.org/10.1021/acsnano.6b03800

    Article  CAS  Google Scholar 

  35. J. Yan, M. Greenblatt, A. Sahiner, D. Sills, M. Croft, Ruddlesden-popper zirconium sulfides: a novel preparation method and characterization of electronic structure. J. Alloys Compd. 229, 216–222 (1995). https://doi.org/10.1016/0925-8388(95)01678-3

    Article  CAS  Google Scholar 

  36. T. Nitta, K. Nagase, S. Hayakawa, Formation, microstructure, and properties of barium zirconium sulfide ceramics. J. Am. Ceram. Soc. 53, 601–604 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb15981.x

    Article  CAS  Google Scholar 

  37. X. Wei, H. Hui, S. Perera, A. Sheng, D.F. Watson, Y.-Y. Sun et al., Ti-Alloying of BaZrS3 chalcogenide perovskite for photovoltaics. ACS Omega 5, 18579–18583 (2020). https://doi.org/10.1021/acsomega.0c00740

    Article  CAS  Google Scholar 

  38. W. Li, J.M.R. Tan, S.W. Leow, S. Lie, S. Magdassi, L.H. Wong, Recent progress in solution-processed copper-chalcogenide thin-film solar cells. Energy Technol. 6, 46–59 (2018). https://doi.org/10.1002/ente.201700734

    Article  CAS  Google Scholar 

  39. Zhao X, Zhang R, Handwerker C, Agrawal R. The potential of amine-thiol based solution processing for chalcogenide photovoltaics. 2016 IEEE 43rd Photovolt. Spec. Conf. PVSC, 2016, p. 0542–4. https://doi.org/10.1109/PVSC.2016.7749653

  40. S.W. Hughes, Archimedes revisited: a faster, better, cheaper method of accurately measuring the volume of small objects. Phys. Educ. 40, 468–474 (2005). https://doi.org/10.1088/0031-9120/40/5/008

    Article  Google Scholar 

  41. S. Niu, B. Zhao, K. Ye, E. Bianco, J. Zhou, M.E. McConney et al., Crystal growth and structural analysis of perovskite chalcogenide BaZrS3 and Ruddlesden-Popper phase Ba3Zr2S7. J. Mater. Res. 34, 3819–3826 (2019). https://doi.org/10.1557/jmr.2019.348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the National Science Foundation (NSF) under Grant No. 1751736, "CAREER: Fundamentals of Complex Chalcogenide Electronic Materials.” A portion of this project was funded by the Skolkovo Institute of Science and Technology as part of the MIT-Skoltech Next Generation Program. This work was carried out in part through the use of the MIT Materials Research Laboratory (MIT MRL), MIT.nano, and the MIT Department of Materials Science shared experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jaramillo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippone, S., Song, S. & Jaramillo, R. High densification of BaZrS3 powder inspired by the cold-sintering process. Journal of Materials Research 36, 4404–4412 (2021). https://doi.org/10.1557/s43578-021-00404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00404-1

Keywords

Navigation