Skip to main content
Log in

Simultaneously enhancing the strength and ductility of particulate-reinforced aluminum matrix composite by aging treatment

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, powder thixoforming technique was utilized to prepare 10 vol% SiC particulate-reinforced 6061 alloy matrix (SiCp/6061Al) composite and artificial aging treatment was conducted to enhance mechanical properties. The results reveal that the aging process of SiCp/6061Al composite at 175 °C can be divided into three stages: under-aged (0.5–10 h) stage, peak-aged (10 h) stage and over-aged (10–48 h) stage, which were dominated by Guinier–Preston zone, β″ and β phase, respectively. Correspondingly, the tensile strengths of this composite exhibited a trend of first rising (0.5–10 h) and then decreasing (10–48 h), while the elongation continuously decreased all the time. Comparing with the as-fabricated composite, optimal aging treatment for 10 h led to maximum ultimate tensile strength of 309 MPa, yield strength of 240 MPa and a moderate elongation of 3.7%, representing remarkable increments of 34.3%, 87.5% and 42.3%, respectively. The aging behaviors of SiCp/6061Al composite and corresponding strengthening as well as toughening mechanisms were discussed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites - A review. J. Mater. Sci. 26(5), 1137 (1991)

    Article  CAS  Google Scholar 

  2. B. Chen, X.Y. Zhou, B. Zhang, K. Kondoh, J.S. Li, M. Qian, Microstructure, tensile properties and deformation behaviors of aluminium metal matrix composites co-reinforced by ex-situ carbon nanotubes and in-situ alumina nanoparticles. Mater. Sci. Eng. A 795, 139930 (2020)

    Article  CAS  Google Scholar 

  3. B.L. Dasari, M. Morshed, J.M. Nouri, D. Brabazon, S. Naher, Mechanical properties of graphene oxide reinforced aluminium matrix composites. Composite B 145, 136 (2018)

    Article  CAS  Google Scholar 

  4. J.J. Wang, J.J. Hao, Z.M. Guo, S. Wang, Plasma preparation and low-temperature sintering of spherical TiC–Fe composite powder. Int. J. Miner. Metall. Mater. 22, 1328 (2015)

    Article  CAS  Google Scholar 

  5. M.C. Flemings, Behavior of metal alloys in the semisolid state. Metall. Trans. B 22(3), 269 (1991)

    Article  Google Scholar 

  6. T.J. Chen, H. Qin, X.Z. Zhang, Effects of reheating duration on the microstructure and tensile properties of in situ core–shell-structured particle-reinforced A356 composites fabricated via powder thixoforming. J. Mater. Sci. 53(Suppl 2), 2576 (2018)

    Article  CAS  Google Scholar 

  7. X.Z. Zhang, T.J. Chen, Solution treatment: A route towards enhancing tensile ductility of SiCp/6061Al composite via powder thixoforming and comparison of micromechanical strength modeling. Mater. Sci. Eng. A 696, 466 (2017)

    Article  CAS  Google Scholar 

  8. X.Z. Zhang, T.J. Chen, Y.H. Qin, Effects of solution treatment on tensile properties and strengthening mechanisms of SiCp/6061Al composites fabricated by powder thixoforming. Mater. Des. 99, 182 (2016)

    Article  CAS  Google Scholar 

  9. P. Li, T. Chen, H. Qin, Effects of pressure on microstructure and mechanical properties of SiCp/2024 Al-based composites fabricated by powder thixoforming. J. Mater. Sci. 52(4), 2045 (2017)

    Article  CAS  Google Scholar 

  10. H. Su, W.L. Gao, C. Mao, H. Zhang, Z. Lu, Microstructures and mechanical properties of SiCp/2024 aluminum matrix composite synthesized by stir casting. Chin. J. Nonferrous Met. 20(2), 217 (2010)

    Article  CAS  Google Scholar 

  11. S.-J. Hong, H.-M. Kim, D. Huh, C. Suryanarayana, B.S. Chun, Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites. Mater. Sci. Eng. A 347(1), 198 (2003)

    Article  Google Scholar 

  12. P. Li, T. Chen, Tensile properties and fracture behavior of a powder-thixoformed 2024Al/SiCp composite at elevated temperatures. Metals 7(10), 408 (2017)

    Article  CAS  Google Scholar 

  13. X.Z. Zhang, T.J. Chen, Toughening mechanisms of solution-treated SiCp/6061 aluminum matrix composites fabricated via powder thixoforming. J. Mater. Res. 33(18), 2728 (2018)

    Article  CAS  Google Scholar 

  14. X.Z. Zhang, T.J. Chen, Bimodal microstructure dispersed with nanosized precipitates makes strong aluminum alloy with large ductility. Mater. Des. 191, 108695 (2020)

    Article  CAS  Google Scholar 

  15. G.F. Liu, T.J. Chen, Z.J. Wang, Effects of solid solution treatment on microstructure and mechanical properties of SiCp/2024 Al composite: A comparison with 2024 Al alloy. Mater. Sci. Eng. A 817, 141413 (2021)

    Article  CAS  Google Scholar 

  16. R. Dong, W. Yang, Z. Yu, P. Wu, M. Hussain, L. Jiang, G. Wu, Aging behavior of 6061Al matrix composite reinforced with high content SiC nanowires. J. Alloys Compd. 649, 1037 (2015)

    Article  CAS  Google Scholar 

  17. N.A. Belov, D.G. Eskin, A.A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys (Elsevier, Amsterdam, 2005)

    Google Scholar 

  18. Z. Wang, J. Tan, B.A. Sun, S. Scudino, K.G. Prashanth, W.W. Zhang, Y.Y. Li, J. Eckert, Fabrication and mechanical properties of Al-based metal matrix composites reinforced with Mg65Cu20Zn5Y10 metallic glass particles. Mater. Sci. Eng. A 600(4), 53 (2014)

    CAS  Google Scholar 

  19. S. Min, C.Q. Xie, H.E. Yue-Hui, Model of effects of particle failure on yield stress of SiC reinforced aluminum alloy composites. Chin. J. Nonferrous Met. 20(2), 244 (2010)

    Google Scholar 

  20. S. Pogatscher, H. Antrekowitsch, H. Leitner, D. Pöschmann, Z.L. Zhang, P.J. Uggowitzer, Influence of interrupted quenching on artificial aging of Al-Mg-Si alloys. Acta Mater. 60(11), 4496 (2012)

    Article  CAS  Google Scholar 

  21. M.H. Jacobs, The structure of the metastable precipitates formed during ageing of an Al–Mg–Si alloy. Philos. Magn. 26(1), 13 (1972)

    Article  Google Scholar 

  22. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62(5), 141 (2014)

    Article  CAS  Google Scholar 

  23. K.A. Unocic, D. Shin, X. Sang, E. Cakmak, P.F. Tortorelli, Single-step aging treatment for a precipitation-strengthened Ni-based alloy and its influence on high-temperature mechanical behavior. Scripta Mater. 162, 416 (2019)

    Article  CAS  Google Scholar 

  24. Z. Zhang, J. Fan, Z. Wu, D. Zhao, Q. Gao, Q. Wang, Z. Chen, B. Tang, H. Kou, J. Li, Precipitation behavior and strengthening-toughening mechanism of hot rolled sheet of Ti65 titanium alloy during aging process. J. Alloys Compd. 831, 154786 (2020)

    Article  CAS  Google Scholar 

  25. S. Jin, T. Ngai, G. Zhang, T. Zhai, S. Jia, L. Li, Precipitation strengthening mechanisms during natural ageing and subsequent artificial aging in an Al–Mg–Si–Cu alloy. Mater. Sci. Eng. A 724, 53 (2018)

    Article  CAS  Google Scholar 

  26. X. Liu, J. Li, E. Liu, C. He, C. Shi, N. Zhao, Towards strength-ductility synergy with favorable strengthening effect through the formation of a quasi-continuous graphene nanosheets coated Ni structure in aluminum matrix composite. Mater. Sci. Eng. 748, 52 (2019)

    Article  CAS  Google Scholar 

  27. J. Woźniak, M. Kostecki, K. Broniszewski, W. Bochniak, A. Olszyna, Aging behaviour of AA6061/SiCp composites produced by direct extrusion with a reversibly rotating die method. Arch. Metall. Mater. 60(3), 1755 (2015)

    Article  CAS  Google Scholar 

  28. X. Cen, Influence of heat treatment on mechanical behavior and microstructure of SiCp/6061Al composites. Foundry Technol. 38(5), 1051 (2017)

    Google Scholar 

  29. D.E. Vg, G. Shaikshavali, M. Muralimohan, Mechanical properties of Al6061 based metal matrix composites reinforced with ceramic particulates and effect of age hardening on its tensile characteristics. Int. J. Eng. Res. Gen. Sci. 4(2), 726 (2016)

    Google Scholar 

  30. A.M. El-Sabbagh, M. Soliman, M.A. Taha, H. Palkowski, Effect of rolling and heat treatment on tensile behaviour of wrought Al–SiCp composites prepared by stir-casting. J. Mater. Process. Technol. 213(10), 1669 (2013)

    Article  CAS  Google Scholar 

  31. T. Das, P.R. Munroe, S. Bandyopadhyay, The effect of Al2O3 particulates on the precipitation behaviour of 6061 aluminium-matrix composites. J. Mater. Sci. 31(20), 5351 (1996)

    Article  CAS  Google Scholar 

  32. Y.L. Li, W.X. Wang, H.S. Chen, J.C. Zhao, B.D. Wang, Effect of heat treatment on microstructure and properties of 30%B4C/6061Al composites. Trans. Mater. Heat Treat. 37(4), 22 (2016)

    Google Scholar 

  33. C.M. Friend, S.D. Luxton, The effect of δ alumina fibre arrays on the age-hardening characteristics of an Al–Mg–Si alloy. J. Mater. Sci. 23(9), 3173 (1988)

    Article  CAS  Google Scholar 

  34. X. Zhang, Effects of Heat Treatment on the Microstructures and Mechanical Properties of Sicp/6061al Composite Fabricated by Powder Thixoforming and Research on the Corresponding Strengthening and Toughening Mechanisms (Lanzhou University of Technology, Lanzhou, 2019)

    Google Scholar 

  35. Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W.A. Curtin, Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science 359(6374), 447 (2018)

    Article  CAS  Google Scholar 

  36. X. Li, L. Lu, J. Li, X. Zhang, H. Gao, Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat. Rev. Mater. 5(9), 706 (2020)

    Article  CAS  Google Scholar 

  37. W. Yu, S.L. Sing, C.K. Chua, C. Kuo, X. Tian, Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. Prog. Mater. Sci. 104, 330 (2019)

    Article  CAS  Google Scholar 

  38. M. Whelan, On the kinetics of particle dissolution. Metals Sci. J. 3, 95 (1969)

    Article  CAS  Google Scholar 

  39. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22 (1953)

    Article  CAS  Google Scholar 

  40. H.S. Chu, K.S. Liu, J.W. Yeh, Aging behavior and tensile properties of 6061Al-0.3 μm Al2O3p particle composites produced by reciprocating extrusion. Scripta Mater. 45(5), 541 (2001)

    Article  CAS  Google Scholar 

  41. M. Zhao, G. Wu, L. Jiang, Aging behavior and precipitation kinetics of SiCp/6061AI composites. J. Mater. Sci. 39(5), 1759 (2004)

    Article  CAS  Google Scholar 

  42. I. Dutta, S.M. Allen, J.L. Hafley, Effect of reinforcement on the aging response of cast 6061 Al-Al2O3 particulate composites. Metall. Trans. A 22(11), 2553 (1991)

    Article  Google Scholar 

  43. M. Song, L.I. Xia, K.H. Chen, Modeling the age-hardening behavior of sic/al metal matrix composites. Metall. Mater. Trans. A 38(3), 638 (2007)

    Article  CAS  Google Scholar 

  44. H.M. Guo, X.J. Yang, Preparation of semi-solid slurry containing fine and globular particles for wrought aluminum alloy 2024. Trans. Nonferrous. Met. Soc. China. 17, 799 (2007)

    Article  CAS  Google Scholar 

  45. G. Esteban-Manzanares, E. Martínez, J. Segurado, L. Capolungo, J. Llorca, An atomistic investigation of the interaction of dislocations with Guinier–Preston zones in Al–Cu alloys. Acta Mater. 162, 189 (2019)

    Article  CAS  Google Scholar 

  46. M. Song, Modeling the hardness and yield strength evolutions of aluminum alloy with rod/needle-shaped precipitates. Mater. Sci. Eng. A 443(1–2), 172 (2007)

    Article  CAS  Google Scholar 

  47. H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering ☆. Acta Mater. 61(8), 2769 (2013)

    Article  CAS  Google Scholar 

  48. A.J. Ardell, Precipitation hardening. Metall. Trans. A 16(12), 2131 (1985)

    Article  Google Scholar 

  49. G.H. Li, J.P. Li, F. Xia, J. Zhao, Reinforcing mechanism ofAl3Ti–TiB2–SiC/Al–13Si composite. J. Xi’an Inst. Technol. 25(5), 449 (2005)

    Google Scholar 

  50. S. Amirkhanlou, M. Rahimian, M. Ketabchi, N. Parvin, P. Yaghinali, F. Carreño, Strengthening mechanisms in nanostructured Al/SiCp composite manufactured by accumulative press bonding. Metall. Mater. Trans. A 47(10), 5136 (2016)

    Article  CAS  Google Scholar 

  51. V.C. Nardone, K.M. Prewo, On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Metall. 20(1), 43 (1986)

    Article  CAS  Google Scholar 

  52. C.A. Lewis, P.J. Withers, Weibull modelling of particle cracking in metal matrix composites. Acta Metall. 43(10), 3685 (1995)

    Article  CAS  Google Scholar 

  53. L. Sun, G. Wu, Q. Wang, J. Lu, Nanostructural metallic materials: Structures and mechanical properties. Mater. Today. 38, 114 (2020)

    Article  CAS  Google Scholar 

  54. E. Ma, T. Zhu, Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today. 20(6), 323 (2017)

    Article  CAS  Google Scholar 

  55. W. Yinmin, C. Mingwei, Z. Fenghua, M. En, High tensile ductility in a nanostructured metal. Nature 419(6910), 912 (2002)

    Article  CAS  Google Scholar 

  56. B. Guo, M. Song, X. Zhang, Y. Liu, X. Cen, B. Chen, W. Li, Exploiting the synergic strengthening effects of stacking faults in carbon nanotubes reinforced aluminum matrix composites for enhanced mechanical properties. Composites B 211, 108646 (2021)

    Article  CAS  Google Scholar 

  57. X. Zhang, T. Chen, S. Ma, H. Qin, J. Ma, Overcoming the strength-ductility trade-off of an aluminum matrix composite by novel core-shell structured reinforcing particulates. Composite B 206, 108541 (2021)

    Article  CAS  Google Scholar 

  58. V.M. Sglavo, F. Marino, B.R. Zhang, S. Gialanella, Ni3Al intermetallic compound as second phase in Al2O3 ceramic composites. Mater. Sci. Eng. A 239–240, 665 (1997)

    Article  Google Scholar 

  59. Y. Yue, Y. Gao, W. Hu, B. Xu, J. Wang, X. Zhang, Q. Zhang, Y. Wang, B. Ge, Z. Yang, Z. Li, P. Ying, X. Liu, D. Yu, B. Wei, Z. Wang, X.-F. Zhou, L. Guo, Y. Tian, Hierarchically structured diamond composite with exceptional toughness. Nature 582(7812), 370 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Basic Scientific Fund of Gansu Universities (Grant No. G2014-07), the Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0023) and the Program for Hongliu Outstanding Talents of Lanzhou University of Technology (Grant No. 2012-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tijun Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, T. Simultaneously enhancing the strength and ductility of particulate-reinforced aluminum matrix composite by aging treatment. Journal of Materials Research 36, 3445–3459 (2021). https://doi.org/10.1557/s43578-021-00389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00389-x

Keywords

Navigation