Skip to main content

Advertisement

Log in

Molybdenum oxide nanoporous asymmetric membranes for high-capacity lithium ion battery anode

  • Article
  • FOCUS ISSUE: Transition Metal-based Nanomaterials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

A Correction to this article was published on 26 October 2021

This article has been updated

Abstract

The cycling performance of high-capacity lithium ion battery anodes can be significantly improved by adopting 3D nanoporous structures that can efficiently accommodate large volume changes during lithiation and de-lithiation. In this study, various molybdenum oxide nanoporous asymmetric membranes were fabricated on a large scale via a spontaneous non-solvent-induced phase separation process. We explored the effects of polymer precursor, membrane geometry, and annealing condition on the porosity, composition, and electrochemical properties of the membranes as lithium ion battery anodes. We demonstrate that 97% initial capacity of MoO2 planar asymmetric membrane electrode can be retained in 165 cycles at 120 mA g−1. 74% initial capacity can be maintained while the current density is increased from 60 to 480 mA g−1. This efficient and scalable process to prepare molybdenum oxide-based LIB anode provides another alternative to enhance the electrochemical performance of transition metal oxide anodes at a relatively low fabrication cost.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. M. Yu, H. Shao, G. Wang, F. Yang, C. Liang, P. Rozier, C.-Z. Wang, X. Lu, P. Simon, X. Feng, Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices. Nat. Commun. 11(1), 1348 (2020)

    Article  CAS  Google Scholar 

  2. W.-J. Li, Z.-W. Fu, Nanostructured WO3 thin film as a new anode material for lithium-ion batteries. Appl. Surf. Sci. 256(8), 2447 (2010)

    Article  CAS  Google Scholar 

  3. R. Bekarevich, Y. Pihosh, Y. Tanaka, K. Nishikawa, Y. Matsushita, T. Hiroto, H. Ohata, T. Ohno, T. Minegishi, M. Sugiyama, T. Kitamori, K. Mitsuishi, K. Takada, Conversion reaction in the binder-free anode for fast-charging Li-ion batteries based on WO3 nanorods. ACS Appl. Energy Mater. 3(7), 6700 (2020)

    Article  CAS  Google Scholar 

  4. Y. Liu, Y. Jiao, H. Zhou, X. Yu, F. Qu, X. Wu, Rational design of WO(3) nanostructures as the anode materials for lithium-ion batteries with enhanced electrochemical performance. Nanomicro Lett. 7(1), 12 (2015)

    Article  CAS  Google Scholar 

  5. Y. Wang, Z. Huang, Y. Wang, A new approach to synthesize MoO2@C for high-rate lithium ion batteries. J. Mater. Chem. A 3(42), 21314 (2015)

    Article  CAS  Google Scholar 

  6. S. Petnikota, K.W. Teo, L. Chen, A. Sim, S.K. Marka, M.V. Reddy, V.V.S.S. Srikanth, S. Adams, B.V.R. Chowdari, Exfoliated graphene oxide/MoO2 composites as anode materials in lithium-ion batteries: an insight into intercalation of Li and conversion mechanism of MoO2. ACS Appl. Mater. Interfaces 8(17), 10884 (2016)

    Article  CAS  Google Scholar 

  7. S. Fang, D. Bresser, S. Passerini, Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 10(1), 1902485 (2020)

    Article  CAS  Google Scholar 

  8. Y. Chen, X. Chen, Y. Zhang, A comprehensive review on metal-oxide nanocomposites for high-performance lithium-ion battery anodes. Energy Fuels 35(8), 6420 (2021)

    Article  CAS  Google Scholar 

  9. A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11(1), 1550 (2020)

    Article  CAS  Google Scholar 

  10. L. Zhou, L. Yang, P. Yuan, J. Zou, Y. Wu, C. Yu, α-MoO3 nanobelts: a high performance cathode material for lithium ion batteries. J. Phys. Chem. C. 114(49), 21868 (2010)

    Article  CAS  Google Scholar 

  11. X. Zhao, W. Jia, X. Wu, Y. Lv, J. Qiu, J. Guo, X. Wang, D. Jia, J. Yan, D. Wu, Ultrafine MoO3 anchored in coal-based carbon nanofibers as anode for advanced lithium-ion batteries. Carbon 156, 445 (2020)

    Article  CAS  Google Scholar 

  12. U.K. Sen, S. Mitra, Synthesis of molybdenum oxides and their electrochemical properties against Li. Energy Procedia. 54, 740 (2014)

    Article  CAS  Google Scholar 

  13. M.A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, E. Haro-Poniatowski, Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation. Opt. Mater. 33(3), 480 (2011)

    Article  CAS  Google Scholar 

  14. R.J. Petersen, Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 83(1), 81 (1993)

    Article  CAS  Google Scholar 

  15. J. Radjenović, M. Petrović, F. Ventura, D. Barceló, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42(14), 3601 (2008)

    Article  CAS  Google Scholar 

  16. B. Nicolaisen, Developments in membrane technology for water treatment. Desalination 153(1), 355 (2003)

    Article  CAS  Google Scholar 

  17. J. Wu, H. Chen, C. Padgett, Silicon asymmetric membranes for efficient lithium storage: a scalable method. Energy Technol. 4(4), 502 (2016)

    Article  CAS  Google Scholar 

  18. I. Byrd, H. Chen, T. Webber, J. Li, J. Wu, Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries. RSC Adv. 5(113), 92878 (2015)

    Article  CAS  Google Scholar 

  19. J. Wu, H. Chen, I. Byrd, S. Lovelace, C. Jin, Fabrication of SnO2 asymmetric membranes for high performance lithium battery anode. ACS Appl. Mater. Interfaces 8(22), 13946 (2016)

    Article  CAS  Google Scholar 

  20. M. Li, C. Anderson, P. Beaupre, C. Jin, J. Li, J. Wu, Tin asymmetric membranes for high capacity sodium ion battery anodes. Mater. Today Commun. 24, 100998 (2020)

    Article  CAS  Google Scholar 

  21. M. Müller, V. Abetz, Nonequilibrium processes in polymer membrane formation: theory and experiment. Chem. Rev. (2021). https://doi.org/10.1021/acs.chemrev.1c00029

    Article  Google Scholar 

  22. G.M. Geise, H.B. Park, A.C. Sagle, B.D. Freeman, J.E. McGrath, Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369(1), 130 (2011)

    Article  CAS  Google Scholar 

  23. J. Wienold, R.E. Jentoft, T. Ressler, Structural investigation of the thermal decomposition of ammonium heptamolybdate by in situ XAFS and XRD. Eur. J. Inorg. Chem. 2003(6), 1058 (2003)

    Article  Google Scholar 

  24. M. Ihsan, H. Wang, S.R. Majid, J. Yang, S.J. Kennedy, Z. Guo, H.K. Liu, MoO2/Mo2C/C spheres as anode materials for lithium ion batteries. Carbon 96, 1200 (2016)

    Article  CAS  Google Scholar 

  25. J.C. Lee, B.H. Lee, B.G. Kim, M.J. Park, D.Y. Lee, I.H. Kuk, H. Chung, H.S. Kang, H.S. Lee, D.H. Ahn, The effect of carbonization temperature of PAN fiber on the properties of activated carbon fiber composites. Carbon 35(10), 1479 (1997)

    Article  CAS  Google Scholar 

  26. I. Pinnau, W.J. Koros, Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion. J. Appl. Polym. Sci. 43(8), 1491 (1991)

    Article  CAS  Google Scholar 

  27. I.-C. Kim, H.-G. Yun, K.-H. Lee, Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process. J. Membr. Sci. 199(1), 75 (2002)

    Article  CAS  Google Scholar 

  28. K.-W. Lee, B.-K. Seo, S.-T. Nam, M.-J. Han, Trade-off between thermodynamic enhancement and kinetic hindrance during phase inversion in the preparation of polysulfone membranes. Desalination 159(3), 289 (2003)

    Article  CAS  Google Scholar 

  29. C. Barth, M.C. Gonçalves, A.T.N. Pires, J. Roeder, B.A. Wolf, Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J. Membr. Sci. 169(2), 287 (2000)

    Article  CAS  Google Scholar 

  30. J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8(1), 15437 (2017)

    Article  CAS  Google Scholar 

  31. R.K. Sharma, G.B. Reddy, Synthesis and characterization of α-MoO3 microspheres packed with nanoflakes. J. Phys. D: Appl. Phys. 47(6), 065305 (2014)

    Article  CAS  Google Scholar 

  32. M. Tang, A.T. Nelson, E.S. Wood, S.A. Maloy, Y.-B. Jiang, Grazing incidence X-ray diffraction and transmission electron microscopy studies on the oxide formation of molybdenum in a water vapor environment. Scr. Mater. 120, 49 (2016)

    Article  CAS  Google Scholar 

  33. X. Lu, R. Wang, F. Yang, W. Jiao, W. Liu, L. Hao, X. He, Preparation of MoO3 QDs through combining intercalation and thermal exfoliation. J. Mater. Chem. C. 4(28), 6720 (2016)

    Article  CAS  Google Scholar 

  34. H. Sitepu, B.H. O’Connor, D. Li, Comparative evaluation of the March and generalized spherical harmonic preferred orientation models using X-ray diffraction data for molybdite and calcite powders. J. Appl. Crystallogr. 38(1), 158 (2005)

    Article  CAS  Google Scholar 

  35. D.E. Cox, R.J. Cava, D.B. McWhan, D.W. Murphy, A neutron powder diffraction study of the lithium insertion compound LiMoO2 from 4–440K. J. Phys. Chem. Solids 43(8), 657 (1982)

    Article  CAS  Google Scholar 

  36. E. Pu, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, J. Miao, Ultrathin MoO2 nanosheets with good thermal stability and high conductivity. AIP Adv. 7(2), 025015 (2017)

    Article  CAS  Google Scholar 

  37. C.F. Holder, R.E. Schaak, Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13(7), 7359 (2019)

    Article  CAS  Google Scholar 

  38. D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C 114(10), 4636 (2010)

    Article  CAS  Google Scholar 

  39. J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts, N. Fairley, Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl. Surf. Sci. 326, 151 (2015)

    Article  CAS  Google Scholar 

  40. F. Borgatti, J.A. Berger, D. Céolin, J.S. Zhou, J.J. Kas, M. Guzzo, C.F. McConville, F. Offi, G. Panaccione, A. Regoutz, D.J. Payne, J.-P. Rueff, O. Bierwagen, M.E. White, J.S. Speck, M. Gatti, R.G. Egdell, Revisiting the origin of satellites in core-level photoemission of transparent conducting oxides: the case of n-doped SnO2. Phys. Rev. B. 97(15), 155102 (2018)

    Article  CAS  Google Scholar 

  41. L. Fransson, T. Eriksson, K. Edström, T. Gustafsson, J.O. Thomas, Influence of carbon black and binder on Li-ion batteries. J. Power Sources 101(1), 1 (2001)

    Article  CAS  Google Scholar 

  42. Q. Ai, D. Li, J. Guo, G. Hou, Q. Sun, Q. Sun, X. Xu, W. Zhai, L. Zhang, J. Feng, P. Si, J. Lou, L. Ci, Artificial solid electrolyte interphase coating to reduce lithium trapping in silicon anode for high performance lithium-ion batteries. Adv. Mater. Interfaces 6(21), 1901187 (2019)

    Article  CAS  Google Scholar 

  43. I. Byrd, J. Wu, Asymmetric membranes containing micron-size silicon for high performance lithium ion battery anode. Electrochim. Acta 213, 46 (2016)

    Article  CAS  Google Scholar 

  44. K. Goldshtein, K. Freedman, D. Schneier, L. Burstein, V. Ezersky, E. Peled, D. Golodnitsky, Advanced multiphase silicon-based anodes for high-energy-density Li-ion batteries. J. Electrochem. Soc. 162(6), A1072 (2015)

    Article  CAS  Google Scholar 

  45. Q.-L. Wu, S.-X. Zhao, L. Yu, L.-Q. Yu, X.-X. Zheng, G. Wei, In situ synthesis and electrochemical performance of MoO3x nanobelts as anode materials for lithium-ion batteries. Dalton Trans. 48(34), 12832 (2019)

    Article  CAS  Google Scholar 

  46. S. Yoon, K.-N. Jung, C.S. Jin, K.-H. Shin, Synthesis of nitrided MoO2 and its application as anode materials for lithium-ion batteries. J. Alloys Compd. 536, 179 (2012)

    Article  CAS  Google Scholar 

  47. L. Zhong, J. Guo, L. Mangolini, A stable silicon anode based on the uniform dispersion of quantum dots in a polymer matrix. J. Power Sources 273, 638 (2015)

    Article  CAS  Google Scholar 

  48. P. Wu, S. Chen, A. Liu, The influence of contact engineering on silicon-based anode for Li-ion batteries. Nano Select 2(3), 468 (2021)

    Article  CAS  Google Scholar 

  49. A.R.C. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 3(1), 66 (2020)

    Article  CAS  Google Scholar 

  50. C. Li, C. Liu, W. Wang, J. Bell, Z. Mutlu, K. Ahmed, R. Ye, M. Ozkan, C.S. Ozkan, Towards flexible binderless anodes: silicon/carbon fabrics via double-nozzle electrospinning. Chem. Commun. 52(76), 11398 (2016)

    Article  CAS  Google Scholar 

  51. H.-S. Kim, J.B. Cook, S.H. Tolbert, B. Dunn, The development of pseudocapacitive properties in nanosized-MoO2. J. Electrochem. Soc. 162(5), A5083 (2015)

    Article  CAS  Google Scholar 

  52. S. Lorger, K. Narita, R. Usiskin, J. Maier, Enhanced ion transport in Li2O and Li2S films. Chem. Commun. 57(53), 6503 (2021)

    Article  CAS  Google Scholar 

  53. J. Wu, C. Anderson, P. Beaupre, S. Xu, C. Jin, A. Sharma, Co-axial fibrous silicon asymmetric membranes for high-capacity lithium-ion battery anode. J. Appl. Electrochem. 49(10), 1013 (2019)

    Article  CAS  Google Scholar 

  54. M. Jing, C.-G. Wang, Q. Wang, Y.-J. Bai, B. Zhu, Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350–600°C. Polym. Degrad. Stab. 92(9), 1737 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Foundation Division of Chemical, Bioengineering, Environmental and Transport Systems (NSF CBET Award #1800619). XPS was performed in the Nebraska Nanoscale Facility: National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Materials and Nanoscience (and/or NERCF), which are supported by the National Science Foundation under Award ECCS: 2025298, and the Nebraska Research Initiative. This research also used resources at the Center for Functional Nanomaterials at Brookhaven National Laboratory, which is a U.S. DOE Office of Science Facility under contract DE-SC0012704. J.W. and J. D. also want to acknowledge the generous infrastructural support provided by Georgia Southern University and GSU COUR award.

Funding

NSF CBET Award #1800619; NSF ECCS Award #2025298; U.S. DOE Office of Science Facility under contract DE-SC0012704.; Georgia Southern University COUR Award.

Author information

Authors and Affiliations

Authors

Contributions

E.L., L.W., C.J., and X.C. carried out the experiments and participated in scientific discussion and manuscript preparation as well. J.D., O.S., and S.X. performed the experiments. J.W. came up with the research hypothesis, designed the experiments, managed the project, and drafted the manuscript.

Corresponding author

Correspondence to Ji Wu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

This article was updated to correct Olivia Sheppard’s name.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larson, E., Williams, L., Jin, C. et al. Molybdenum oxide nanoporous asymmetric membranes for high-capacity lithium ion battery anode. Journal of Materials Research 37, 2204–2215 (2022). https://doi.org/10.1557/s43578-021-00347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00347-7

Keywords

Navigation