Skip to main content
Log in

Co-axial fibrous silicon asymmetric membranes for high-capacity lithium-ion battery anode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Silicon as a promising candidate for the next-generation high-capacity lithium-ion battery anode is characterized by outstanding capacity, high abundance, low operational voltage, and environmental benignity. However, large volume changes during Si lithiation and de-lithiation can seriously impair its long-term cyclability. Although extensive research efforts have been made to improve the electrochemical performance of Si-based anodes, there is a lack of efficient fabrication methods that are low cost, scalable, and self-assembled. In this report, co-axial fibrous silicon asymmetric membrane has been synthesized using a scalable and straightforward phase inversion method combined with dip coating as inspired by the hollow fiber membrane technology that has been successfully commercialized over the last decades to provide billions of gallons of purified drinking water worldwide. We demonstrate that ~ 90% initial capacity of co-axial fibrous Si asymmetric membrane electrode can be maintained after 300 cycles applying a current density of 400 mA g−1. The diameter of fibers, size of silicon particles, type of polymers, and exterior coating have been identified as critical factors that can influence the electrode stability, initial capacity, and rate performance. Much enhanced electrochemical performance can be harvested from a sample that has thinner fiber diameter, smaller silicon particle, lower silicon content, and porous carbon coating. This efficient and scalable approach to prepare high-capacity silicon-based anode with outstanding cyclability is fully compatible with industrial roll-to-roll processing technology, thus bearing a great potential for its future commercialization.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LIBs:

Lithium-ion batteries

NPs:

Nanoparticles

Si:

Silicon

SEM:

Scanning electron microscope

EDS:

Energy-dispersive X-ray spectroscopy

PXRD:

Powder X-ray diffractometer

TGA:

Thermogravimetric analyzer

BET:

Brunauer–Emmett–Teller

XPS:

X-ray photoelectron spectroscopy

PAN:

Polyacrylonitrile

PS:

Polysulfone

CB:

Carbon black

NMP:

N-methyl-2-pyrrolidone

EIS:

Electrochemical impedance spectroscopy

G:

Gauge

SEI:

Solid electrolyte interphase

rpm:

Rotations per minute

References

  1. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312. https://doi.org/10.1016/j.pnsc.2008.07.014

    Article  CAS  Google Scholar 

  2. Tarascon J-M (2010) Key challenges in future Li-battery research. Philos Trans R Soc A 368(1923):3227–3241. https://doi.org/10.1098/rsta.2010.0112

    Article  Google Scholar 

  3. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652. https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  4. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264. https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  5. Kim H, Lee E-J, Sun Y-K (2014) Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries. Mater Today 17(6):285–297. https://doi.org/10.1016/j.mattod.2014.05.003

    Article  CAS  Google Scholar 

  6. Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4(1):1300882. https://doi.org/10.1002/aenm.201300882

    Article  CAS  Google Scholar 

  7. Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M, Chen Z (2018) Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14(8):1702737. https://doi.org/10.1002/smll.201702737

    Article  CAS  Google Scholar 

  8. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat Nanotechnol 7:310. https://doi.org/10.1038/nnano.2012.35

    Article  CAS  PubMed  Google Scholar 

  9. Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5:1042. https://doi.org/10.1038/nchem.1802

    Article  CAS  PubMed  Google Scholar 

  10. Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2(11):3004–3010. https://doi.org/10.1021/am100871y

    Article  CAS  PubMed  Google Scholar 

  11. Kumar SK, Ghosh S, Malladi SK, Nanda J, Martha SK (2018) Nanostructured silicon-carbon 3D electrode architectures for high-performance lithium-ion batteries. ACS Omega 3(8):9598–9606. https://doi.org/10.1021/acsomega.8b00924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benítez A, Lecce D, Elia GA, Caballero Á, Morales J, Hassoun J (2018) A lithium-ion battery using a 3 D-array nanostructured graphene-sulfur cathode and a silicon oxide-based anode. Chemsuschem 11(9):1512–1520. https://doi.org/10.1002/cssc.201800242

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Kopold P, van Aken PA, Maier J, Yu Y (2015) Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew Chem Int Ed 54(33):9632–9636. https://doi.org/10.1002/anie.201503150

    Article  CAS  Google Scholar 

  14. Zhao C, Wada T, De Andrade V, Gürsoy D, Kato H, Y-cK Chen-Wiegart (2018) Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography. Nano Energy 52:381–390. https://doi.org/10.1016/j.nanoen.2018.08.009

    Article  CAS  Google Scholar 

  15. Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353. https://doi.org/10.1038/nmat2725

    Article  CAS  PubMed  Google Scholar 

  16. Xia F, Kim SB, Cheng H, Lee JM, Song T, Huang Y, Rogers JA, Paik U, Park WI (2013) Facile synthesis of free-standing silicon membranes with three-dimensional nanoarchitecture for anodes of lithium ion batteries. Nano Lett 13(7):3340–3346. https://doi.org/10.1021/nl401629q

    Article  CAS  PubMed  Google Scholar 

  17. Jin Y, Zhu B, Lu Z, Liu N, Zhu J (2017) Challenges and recent progress in the development of si anodes for lithium-ion battery. Adv Energy Mater 7(23):1700715. https://doi.org/10.1002/aenm.201700715

    Article  CAS  Google Scholar 

  18. Petersen RJ (1993) Composite reverse osmosis and nanofiltration membranes. J Membr Sci 83(1):81–150. https://doi.org/10.1016/0376-7388(93)80014-O

    Article  CAS  Google Scholar 

  19. Radjenović J, Petrović M, Ventura F, Barceló D (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 42(14):3601–3610. https://doi.org/10.1016/j.watres.2008.05.020

    Article  CAS  PubMed  Google Scholar 

  20. Nicolaisen B (2003) Developments in membrane technology for water treatment. Desalination 153(1):355–360. https://doi.org/10.1016/S0011-9164(02)01127-X

    Article  CAS  Google Scholar 

  21. Cadotte JE, Petersen RJ, Larson RE, Erickson EE (1980) A new thin-film composite seawater reverse osmosis membrane. Desalination 32:25–31. https://doi.org/10.1016/S0011-9164(00)86003-8

    Article  Google Scholar 

  22. Wu J, Chen H, Padgett C (2016) Silicon asymmetric membranes for efficient lithium storage: a scalable method. Energy Technol 4(4):502–509. https://doi.org/10.1002/ente.201500315

    Article  CAS  Google Scholar 

  23. Wu J, Chen H, Byrd I, Lovelace S, Jin C (2016) Fabrication of SnO2 asymmetric membranes for high performance lithium battery anode. ACS Appl Mater Interfaces 8(22):13946–13956. https://doi.org/10.1021/acsami.6b03310

    Article  CAS  PubMed  Google Scholar 

  24. Wu J, Byrd I, Jin C, Li J, Chen H, Camp T, Bujol R, Sharma A, Zhang H (2017) Reinvigorating reverse-osmosis membrane technology to stabilize the V2O5 lithium-ion battery cathode. ChemElectroChem 4(5):1181–1189. https://doi.org/10.1002/celc.201700102

    Article  CAS  Google Scholar 

  25. Byrd I, Chen H, Webber T, Li J, Wu J (2015) Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries. RSC Adv 5(113):92878–92884. https://doi.org/10.1039/C5RA19208K

    Article  CAS  Google Scholar 

  26. van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117(1):1–31. https://doi.org/10.1016/0376-7388(96)00088-9

    Article  Google Scholar 

  27. Wang R, Shi L, Tang CY, Chou S, Qiu C, Fane AG (2010) Characterization of novel forward osmosis hollow fiber membranes. J Membr Sci 355(1):158–167. https://doi.org/10.1016/j.memsci.2010.03.017

    Article  CAS  Google Scholar 

  28. Bottino A, Capannelli G, Munari S (1986) Factors affecting the structure and properties of asymmetric polymeric membranes. In: Drioli E, Nakagaki M (eds) Membranes and membrane processes. Springer, Boston, pp 163–178. https://doi.org/10.1007/978-1-4899-2019-5_17

    Chapter  Google Scholar 

  29. Cocciantelli JM, Ménétrier M, Delmas C, Doumerc JP, Pouchard M, Broussely M, Labat J (1995) On the δ → γ irreversible transformation in Li//V2O5 secondary batteries. Solid State Ionics 78(1–2):143–150. https://doi.org/10.1016/0167-2738(95)00015-X

    Article  CAS  Google Scholar 

  30. Du Z, Wood DL, Daniel C, Kalnaus S, Li J (2017) Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. J Appl Electrochem 47(3):405–415. https://doi.org/10.1007/s10800-017-1047-4

    Article  CAS  Google Scholar 

  31. Pinnau I, Koros WJ (1991) Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion. J Appl Polym Sci 43(8):1491–1502. https://doi.org/10.1002/app.1991.070430811

    Article  CAS  Google Scholar 

  32. Kim I-C, Yun H-G, Lee K-H (2002) Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process. J Membr Sci 199(1):75–84. https://doi.org/10.1016/S0376-7388(01)00680-9

    Article  CAS  Google Scholar 

  33. Lee K-W, Seo B-K, Nam S-T, Han M-J (2003) Trade-off between thermodynamic enhancement and kinetic hindrance during phase inversion in the preparation of polysulfone membranes. Desalination 159(3):289–296. https://doi.org/10.1016/S0011-9164(03)90081-6

    Article  CAS  Google Scholar 

  34. Barth C, Gonçalves MC, Pires ATN, Roeder J, Wolf BA (2000) Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J Membr Sci 169(2):287–299. https://doi.org/10.1016/S0376-7388(99)00344-0

    Article  CAS  Google Scholar 

  35. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1):47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  36. Meier C, Lüttjohann S, Kravets VG, Nienhaus H, Lorke A, Wiggers H (2006) Raman properties of silicon nanoparticles. Phys E 32(1):155–158. https://doi.org/10.1016/j.physe.2005.12.030

    Article  CAS  Google Scholar 

  37. Misra S, Liu N, Nelson J, Hong SS, Cui Y, Toney MF (2012) In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. ACS Nano 6(6):5465–5473. https://doi.org/10.1021/nn301339g

    Article  CAS  PubMed  Google Scholar 

  38. Mondal T, Bhowmick AK, Krishnamoorti R (2012) Chlorophenyl pendant decorated graphene sheet as a potential antimicrobial agent: synthesis and characterization. J Mater Chem 22(42):22481–22487. https://doi.org/10.1039/C2JM33398H

    Article  CAS  Google Scholar 

  39. Wang S, Chen Z-H, Ma W-J, Ma Q-S (2006) Influence of heat treatment on physical–chemical properties of PAN-based carbon fiber. Ceram Int 32(3):291–295. https://doi.org/10.1016/j.ceramint.2005.02.014

    Article  CAS  Google Scholar 

  40. Huang X (2009) Fabrication and properties of carbon fibers. Materials 2(4):2369

    Article  CAS  PubMed Central  Google Scholar 

  41. Reynolds WN, Moreton R, Worthington PJ (1980) Some factors affecting the strengths of carbon fibres [and discussion]. Philos Trans R Soc Lond Ser A 294(1411):451–461

    Article  CAS  Google Scholar 

  42. He JW, Xu X, Corneille JS, Goodman DW (1992) X-ray photoelectron spectroscopic characterization of ultra-thin silicon oxide films on a Mo(100) surface. Surf Sci 279(1):119–126. https://doi.org/10.1016/0039-6028(92)90748-U

    Article  CAS  Google Scholar 

  43. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76. https://doi.org/10.1016/j.carbon.2016.04.008

    Article  CAS  Google Scholar 

  44. Fitzer E (1989) Pan-based carbon fibers—present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27(5):621–645. https://doi.org/10.1016/0008-6223(89)90197-8

    Article  Google Scholar 

  45. Ding N, Xu J, Yao YX, Wegner G, Fang X, Chen CH, Lieberwirth I (2009) Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ionics 180(2):222–225. https://doi.org/10.1016/j.ssi.2008.12.015

    Article  CAS  Google Scholar 

  46. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2):1522–1531. https://doi.org/10.1021/nn204476h

    Article  CAS  PubMed  Google Scholar 

  47. Singh M, Kaiser J, Hahn H (2015) Thick electrodes for high energy lithium ion batteries. J Electrochem Soc 162(7):A1196–A1201. https://doi.org/10.1149/2.0401507jes

    Article  CAS  Google Scholar 

  48. Wood M, Li J, Wood DL, Daniel C, Dunlop AR, Polzin BJ, Jansen AN, Krumdick G (2018) Evaluation of thick electrode architectures for high energy density Li-ion batteries. Meeting Abstracts MA2018-01(3):253

  49. Chen LB, Xie JY, Yu HC, Wang TH (2009) An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries. J Appl Electrochem 39(8):1157–1162. https://doi.org/10.1007/s10800-008-9774-1

    Article  CAS  Google Scholar 

  50. Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154(2):A103–A108. https://doi.org/10.1149/1.2402112

    Article  CAS  Google Scholar 

  51. Pereira-Nabais C, Światowska J, Chagnes A, Ozanam F, Gohier A, Tran-Van P, Cojocaru C-S, Cassir M, Marcus P (2013) Interphase chemistry of Si electrodes used as anodes in Li-ion batteries. Appl Surf Sci 266:5–16. https://doi.org/10.1016/j.apsusc.2012.10.165

    Article  CAS  Google Scholar 

  52. McCormac K, Byrd I, Brannen R, Seymour B, Li J, Wu J (2015) Preparation of porous Si and TiO2 nanofibres using a sulphur-templating method for lithium storage. Physica Status Solidi 212(4):877–881. https://doi.org/10.1002/pssa.201431834

    Article  CAS  Google Scholar 

  53. Wang Z, Su Q, Deng H, He W, Lin J, Fu YQ (2014) Modelling and simulation of electron-rich effect on Li diffusion in group IVA elements (Si, Ge and Sn) for Li ion batteries. J Mater Chem A 2(34):13976–13982. https://doi.org/10.1039/C4TA01614A

    Article  CAS  Google Scholar 

  54. Wu JJ, Bennett WR (2012) Fundamental investigation of Si anode in Li-Ion cells. In: 2012 IEEE Energytech, 29–31. pp 1–5. https://doi.org/10.1109/energytech.2012.6304667

  55. Väli R, Jänes A, Lust E (2017) Alkali-metal insertion processes on nanospheric hard carbon electrodes: an electrochemical impedance spectroscopy study. J Electrochem Soc 164(11):E3429–E3437. https://doi.org/10.1149/2.0431711jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation Division of Chemical, Bioengineering, Environmental and Transport Systems (NSF CBET Award #1800619). JW, CA, PB, and SX sincerely acknowledge the generous support provided by Georgia Southern University. C.J. and A.S. thank the support from State University of New York at Binghamton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Anderson, C., Beaupre, P. et al. Co-axial fibrous silicon asymmetric membranes for high-capacity lithium-ion battery anode. J Appl Electrochem 49, 1013–1025 (2019). https://doi.org/10.1007/s10800-019-01343-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01343-w

Keywords

Navigation