Skip to main content

Advertisement

Log in

Disclosing the hidden presence of Ti3+ ions in different TiO2 crystal structures synthesized at low temperature and photocatalytic evaluation by methylene blue photobleaching

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have performed a comprehensive study on the relationship among different crystal structures of TiO2, appearance of self-doping Ti3+ ions at low synthesis temperature, and photodegradation efficiency of the organic dye methylene blue (MB). Samples with anatase and rutile phase of TiO2 were synthesized by microwave assisted hydrothermal method. The anatase structured samples promote faster MB photobleaching in comparison with the rutile one. Electron paramagnetic resonance and X-ray photoelectron spectroscopies disclosed the presence of self-doping Ti3+ ions in the anatase that are completely absent in the rutile phase. The creation of these Ti3+ ions driven by anatase structure due to its lower vacancy formation energy induces mid-gap states within the band-gap of TiO2, which in turn can enhance the visible light absorption. Understanding the precursors at low synthesis temperatures of defects and self-doping formations can shed light on both the efficiency evolution and photocatalytic nature of this important semiconducting material.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (J.A.S.) upon reasonable request.

References

  1. N. Serpone, A.V. Emeline, semiconductor photocatalysis—past, present, and future outlook. J. Phys. Chem. Lett. 3(5), 673–677 (2012)

    Article  CAS  Google Scholar 

  2. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  3. E.T. Veiga, S.L. Fernandes, C.F.O. Graeff, A.S. Polo, Compact TiO2 blocking-layer prepared by LbL for perovskite solar cells. Sol. Energy 214, 510–516 (2021)

    Article  CAS  Google Scholar 

  4. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, R. Ruan, Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J. Clean. Prod. 121725, 1–14 (2020)

    Google Scholar 

  5. D. Zhu, Q. Zhou, Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ. Nanotechnol. Monit. Manag. 100255, 1–11 (2019)

    Google Scholar 

  6. Q. Guo, C. Zhou, Z. Ma, Z. Ren, H. Fan, X. Yang, Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 45(13), 3701–3730 (2016)

    Article  CAS  Google Scholar 

  7. M.A. Henderson, I. Lyubinetsky, Molecular-level insights into photocatalysis from scanning probe microscopy studies on TiO2 (110). Chem. Soc. Rev. 113(6), 4428–4455 (2013)

    Article  CAS  Google Scholar 

  8. D.A. Panayotov, S.P. Burrows, J.R. Morris, Photooxidation mechanism of methanol on rutile TiO2 nanoparticles. J. Phys. Chem. C 116(11), 6623–6635 (2012)

    Article  CAS  Google Scholar 

  9. C.A.K. Gouvêa, F. Wypych, S.G. Moraes, N. Durán, N. Nagata, P. Peralta-Zamora, Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere 40(4), 433–440 (2000)

    Article  Google Scholar 

  10. D.R. Askeland, The Science and Engineering of Materials, 3rd edn. (Springer, Dordrecht, 2003), pp. 1–4

    Google Scholar 

  11. S.M. Sze, K. Kwok, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2006), pp. 1–3

    Google Scholar 

  12. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering—An Introduction, 10th edn. (Wiley, New York, 2020), p. 713

    Google Scholar 

  13. H. Cui, H. Liu, J. Shi, C. Wang, Function of TiO2 lattice defects toward photocatalytic processes: view of electronic driven force. Int. J. Photoenergy 2013, 1–16 (2013)

    Article  CAS  Google Scholar 

  14. D.T. Cromer, K. Herrington, The structures of anatase and rutile. J. Am. Chem. Soc. 77, 4708–4709 (1955)

    Article  CAS  Google Scholar 

  15. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13, 169–189 (2012)

    Article  CAS  Google Scholar 

  16. I. Ali, M. Suhail, Z.A. Alothman, A. Alwarthan, Recent advances in syntheses, properties and applications of TiO2 nanostructures. RSC Adv. 8(53), 30125–30147 (2018)

    Article  CAS  Google Scholar 

  17. R.W. Siegel, S. Ramasamy, H. Hahn, L. Zongquan, L. Ting, R. Gronsky, Synthesis, characterization, and properties of nanophase TiO2. J. Mater. Res. 3(06), 1367–1372 (1988)

    Article  CAS  Google Scholar 

  18. J. Molina, C. Zúñiga, M. Moreno, W. Calleja, P. Rosales, R. Ambrosio, J.L. Sánchez, Physical and electrical characterization of TiO2 particles after high temperature processing and before and after ultraviolet irradiation. Can J Phys 92(7/8), 832–837 (2014)

    Article  CAS  Google Scholar 

  19. T. Xia, J.W. Otto, T. Dutta, J. Murowchick, A.N. Caruso, Z. Peng, X. Chen, Formation of TiO2 nanomaterials via titanium ethylene glycolide decomposition. J. Mater. Res. 28(03), 326–332 (2012)

    Article  CAS  Google Scholar 

  20. N. Wada, Y. Yokomizo, C. Yogi, M. Katayama, A. Tanaka, K. Kojima, K. Ozutsumi, Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. J. Mater. Res. 33(04), 467–481 (2018)

    Article  CAS  Google Scholar 

  21. M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis. Chem. Soc. Rev. 93, 341–357 (1993)

    Article  CAS  Google Scholar 

  22. R. Qian, H. Zong, J. Schneider, G. Zhou, T. Zhao, Y. Li, J. Hong Pan, Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview. Catal. Today 335, 1–47 (2018)

    Google Scholar 

  23. X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5(9), 3601–3614 (2013)

    Article  CAS  Google Scholar 

  24. M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66(6–7), 185–297 (2011)

    Article  CAS  Google Scholar 

  25. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234 (2014)

    Article  CAS  Google Scholar 

  26. J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, Y. Xu, Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36(12), 2049–2070 (2015)

    Article  CAS  Google Scholar 

  27. J. Yu, H. Yu, B. Cheng, M. Zhou, X. Zhao, Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. J. Mol. Catal. A 253(1–2), 112–118 (2006)

    Article  CAS  Google Scholar 

  28. G.R. Torres, T. Lindgren, J. Lu, C.G. Granqvist, S.E. Lindquist, Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation. Energy Environ. Sci. 108, 5995–6003 (2004)

    CAS  Google Scholar 

  29. B. Henkel, T. Neubert, S. Zabel, C. Lamprecht, C. Selhuber-Unkel, K. Rätzke, T. Strunskus, M. Vergöhl, F. Faupel, Photocatalytic properties of titania thin films prepared by sputtering versus evaporation and aging of induced oxygen vacancy defects. Appl. Catal. B 180, 362–371 (2016)

    Article  CAS  Google Scholar 

  30. H. Jiang, Y. Liu, S. Zang, J. Li, H. Wang, Microwave-assisted hydrothermal synthesis of Nd, N, and P tri-doped TiO2 from TiCl4 hydrolysis and synergetic mechanism for enhanced photoactivity under simulated sunlight irradiation. Mater. Sci. Semicond. Process 40, 822–831 (2015)

    Article  CAS  Google Scholar 

  31. C.J. Howard, T.M. Sabine, F. Dickson, Structural and thermal parameters for rutile and anatase. Acta. Crystallogr. B. Struct. Sci. 47(4), 462–468 (1991)

    Article  Google Scholar 

  32. J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16(38), 20382–20386 (2014)

    Article  CAS  Google Scholar 

  33. M. Chiesa, E. Giamello, Electron paramagnetic resonance of charge carriers in solids. Electron Paramagn. Reson. 13, 489–518 (2009)

    Article  Google Scholar 

  34. M. Qiu, Y. Tian, Z. Chen, Z. Yang, W. Li, K. Wang, W. Zhang, Synthesis of Ti3+ self-doped TiO2 nanocrystals based on Le Chatelier’s principle and their application in solar light photocatalysis. RSC Adv. 6(78), 74376–74383 (2016)

    Article  CAS  Google Scholar 

  35. B.J. Morgan, G.W. Watson, Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA+U calculations. J. Phys. Chem. C 114(5), 2321–2328 (2010)

    Article  CAS  Google Scholar 

  36. P. Zhou, Y. Xie, L. Liu, J. Song, T. Chen, Y. Ling, Bicrystalline TiO2 heterojunction for enhanced organic photodegradation: engineering and exploring surface chemistry. RSC Adv. 7(27), 16484–16493 (2017)

    Article  CAS  Google Scholar 

  37. X. Xin, T. Xu, J. Yin, L. Wang, C. Wang, Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis. Appl. Catal. B 176–177, 354–362 (2015)

    Article  CAS  Google Scholar 

  38. S. Mohajernia, P. Andryskova, G. Zoppellaro, S. Hejazi, S. Kment, R. Zboril, P. Schmuki, Influence of Ti3+ defect-type on heterogeneous photocatalytic H2 evolution activity of TiO2. J. Mater. Chem. A 8, 1432–1442 (2020)

    Article  CAS  Google Scholar 

  39. L.R. Grabstanowicz, S. Gao, T. Li, R.M. Rickard, T. Rajh, D.J. Liu, T. Xu, Facile oxidative conversion of TiH2 to high-concentration Ti3+-self-doped rutile TiO2 with visible-light photoactivity. Inorg. Chem. 52(7), 3884–3890 (2013)

    Article  CAS  Google Scholar 

  40. X. Chen, L. Liu, Y.Y. Peter, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    Article  CAS  Google Scholar 

  41. Y. Xu, S. Wu, P. Wan, J. Sun, Z.D. Hood, Introducing Ti3+ defects based on lattice distortion for enhanced visible light photoreactivity in TiO2 microspheres. RSC Adv. 7(52), 32461–32467 (2017)

    Article  CAS  Google Scholar 

  42. J. Kuang, Z. Xing, J. Yin, Z. Li, S. Tan, M. Li, W. Zhou, Ti3+ self-doped rutile/anatase/TiO2 (B) mixed-crystal tri-phase heterojunctions as effective visible-light-driven photocatalysts. Arab. J. Chem. 13, 2568–2578 (2018)

    Article  CAS  Google Scholar 

  43. C. Di Valentin, G. Pacchioni, A. Selloni, Reduced and n-Type doped TiO2: nature of Ti3+ species. J. Phys. Chem. C 113(48), 20543–20552 (2009)

    Article  CAS  Google Scholar 

  44. J.P. Tardivo, A. Del Giglio, C.S. de Oliveira, D.S. Gabrielli, H.C. Junqueira, D.B. Tada, M.S. Baptista, Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn. Photodyn. Ther. 2(3), 175–191 (2005)

    Article  CAS  Google Scholar 

  45. H.C. Junqueira, D. Severino, L.G. Dias, M.S. Gugliotti, M.S. Baptista, Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces. Phys. Chem. Chem. Phys. 4(11), 2320–2328 (2002)

    Article  CAS  Google Scholar 

  46. E. Silva, C. De Landea, A. Marı́aEdwards, E. Lissi, Lysozyme photo-oxidation by singlet oxygen: properties of the partially inactivated enzyme. J. Photochem. Photobiol. B. 55(2–3), 196–200 (2000)

    Article  CAS  Google Scholar 

  47. D. Severino, H.C. Junqueira, M. Gugliotti, D.S. Gabrielli, M.S. Baptista, Baptista Influence of negatively charged interfaces on the ground and excited state properties of methylene blue. Photochem. Photobiol. 77, 459–468 (2003)

    Article  CAS  Google Scholar 

  48. T. Sato, Y. Hamada, M. Sumikawa, S. Araki, H. Yamamoto, Solubility of oxygen in organic solvents and calculation of the hansen solubility parameters of oxygen. J. Ind. Eng. Chem. 53(49), 19331–19337 (2014)

    Article  CAS  Google Scholar 

  49. C.B. Kretschmer, J. Nowakowska, R. Wiebe, Solubility of oxygen and nitrogen in organic solvents from -25° to 50° C. J. Ind. Eng. Chem. 38(5), 506–509 (1946)

    Article  CAS  Google Scholar 

  50. I.B. Golovanov, S.M. Zhenodarova, Quantitative structure-property relationship: XXIII. Solubility of oxygen in organic solvents. Russ. J. Gen. Chem. 75(11), 1795–1797 (2005)

    Article  CAS  Google Scholar 

  51. I. Okeke, K. Agwu, A. Ubachukwu, M. Maaza, F. Ezema, Impact of Cu doping on ZnO nanoparticles phyto-chemically synthesized for improved antibacterial and photocatalytic activities. J. Nanopart. Res. 22(9), 1–18 (2020)

    Article  CAS  Google Scholar 

  52. S.L.N. Zulmajdi, S.N.F.H. Ajak, J. Hobley, N. Duraman, M.H. Harunsani, H.M. Yasin, M. Nur, A. Usman, Kinetics of photocatalytic degradation of methylene blue in aqueous dispersions of TiO2 nanoparticles under UV-LED irradiation. J. Nanomater. 5(1), 1–6 (2017)

    CAS  Google Scholar 

  53. M.J. Uddin, M.M. Alam, M.A. Islam, S.R. Snigda, S. Das, M.M. Rahman, O.I. Okoli, Tailoring the photocatalytic reaction rate of a nanostructured TiO2 matrix using additional gas phase oxygen. Int. Nano Lett. 3(1), 6–10 (2013)

    Article  CAS  Google Scholar 

  54. M.H. Salehi, M.M. Hassan, Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 Nanopowder. J. Environ. Eng. 2, 1–7 (2012)

    Article  Google Scholar 

  55. G. Qing, Z. Chuanyao, M. Zhibo, Y. Xueming, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv. Mater. 1901997, 1–26 (2019)

    Google Scholar 

  56. M.E. Khan, M.M. Khan, B.K. Min, Microbial fuel cell assisted band-gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci. Rep. 8, 1723 (2018)

    Article  CAS  Google Scholar 

  57. M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, A.P. Singh, Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory. J. Mater. Chem. A 4(7), 2670–2681 (2016)

    Article  CAS  Google Scholar 

  58. K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao, J. Lu, Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions. ACS Appl. Mater. Interfaces 9(13), 11577–11586 (2017)

    Article  CAS  Google Scholar 

  59. J. Huo, Y. Hu, H. Jiang, C. Li, In situ surface hydrogenation synthesis of Ti3+ self-doped TiO2 with enhanced visible light photoactivity. Nanoscale 6(15), 9078–9084 (2014)

    Article  CAS  Google Scholar 

  60. M. Chiesa, M.C. Paganini, S. Livraghi, E. Giamello, Charge trapping in TiO2 polymorphs as seen by electron paramagnetic resonance spectroscopy. Phys. Chem. Chem. Phys. 15(24), 9435 (2013)

    Article  CAS  Google Scholar 

  61. M. Wajid Shah, Y. Zhu, X. Fan, J. Zhao, Y. Li, S. Asim, C. Wang, Facile synthesis of defective TiO2−x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis. Sci. Rep. 5(1), 15804 (2015)

    Article  CAS  Google Scholar 

  62. M. Dou, C. Persson, Comparative study of rutile and anatase SnO2 and TiO2: band-edge structures, dielectric functions, and polaron effects. J. Appl. Phys. 113(8), 083703 (2013)

    Article  CAS  Google Scholar 

  63. H. Cheng, A. Selloni, Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys. Rev. B 79(9), 1–4 (2009)

    Article  CAS  Google Scholar 

  64. M. Elahifard, M.R. Sadrian, A. Mirzanejad, R. Behjatmanesh-Ardakani, S. Ahmadvand, Dispersion of defects in TiO2 semiconductor: oxygen vacancies in the bulk and surface of rutile and anatase. Catalysts 10(4), 397 (2020)

    Article  CAS  Google Scholar 

  65. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–750 (2011)

    Article  CAS  Google Scholar 

  66. Q. Zhu, Y. Peng, L. Lin, C.M. Fan, G.Q. Gao, R.X. Wang, A.W. Xu, Stable blue TiO2−x nanoparticles for efficient visible light photocatalysts. J. Mater. Chem. A 2(12), 4429 (2014)

    Article  CAS  Google Scholar 

  67. T.D. Nguyen Phan, H.D. Pham, T. Viet Cuong, E. Jung Kim, S. Kim, E. Woo Shin, A simple hydrothermal preparation of TiO2 nanomaterials using concentrated hydrochloric acid. J. Cryst. Growth 312(1), 79–85 (2009)

    Article  CAS  Google Scholar 

  68. Y. Li, S. Wang, D. Lei, Y.B. He, B. Li, F. Kang, Acetic acid-induced preparation of anatase TiO2 mesocrystals at low temperature for enhanced Li-ion storage. J. Mater. Chem. A 5(24), 12236–12242 (2017)

    Article  CAS  Google Scholar 

  69. P.S. Shen, C.M. Tseng, T.C. Kuo, C.-K. Shih, M.-H. Li, P. Chen, Microwave-assisted synthesis of titanium dioxide nanocrystalline for efficient dye-sensitized and perovskite solar cells. Sol. Energy 120, 345–356 (2015)

    Article  CAS  Google Scholar 

  70. M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd. 494(1–2), 175–189 (2010)

    Article  CAS  Google Scholar 

  71. F. Carvalho, E. Liandra-Salvador, F. Bettanin, J.S. Souza, P. Homem-de-Mello, A.S. Polo, Synthesis, characterization and photoelectrochemical performance of a tris-heteroleptic ruthenium(II) complex having 4,7-dimethyl-1,10-phenanthroline. Inorgan. Chim. Acta 414, 145–152 (2014)

    Article  CAS  Google Scholar 

  72. T. Kawai, T. Sakata, Photocatalytic hydrogen production from liquid methanol and water. J. Am. Chem. Soc. 15, 694 (1980)

    Google Scholar 

Download references

Acknowledgments

The research described herein was conducted during a PhD scholarship financed by UFABC. This work is supported by the Brazilian agency CNPq under grants No. 307950/2017-4 and 404951/2016-3 and by the FAPESP under grants No. 2017/02317-2, 2020/09563-1, 2018/15682-3 and 2019/23277-4. The authors are grateful to the Multiuser Central Facilities (UFABC) for the experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Souza.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1226 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganharul, G.K.Q., Tofanello, A., Bonadio, A. et al. Disclosing the hidden presence of Ti3+ ions in different TiO2 crystal structures synthesized at low temperature and photocatalytic evaluation by methylene blue photobleaching. Journal of Materials Research 36, 3353–3365 (2021). https://doi.org/10.1557/s43578-021-00342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00342-y

Keywords

Navigation