Skip to main content
Log in

Designing organotrialkoxysilane-functionalized microscale enzyme carrier: Spherical polymersomes with tunable catalytic potential

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This manuscript describes fabrication of a cross-linked and nanoengineered three-dimensional matrix of polymersomes for encapsulation of macromolecular cargo such as enzymes. Our approach involves the integration of glucose oxidase (GOx) enzyme into networks of a polysaccharide-silica matrix. Direct chemical cross-linking occurs between the residual groups of alginate polymer and the alkoxysilane moieties in a palladium nanoparticle dispersion; a transformation in the chemical configuration of the alginate hydrogel along with precise control over the pore size distribution facilitate immobilization of enzyme. The activity of the polymersomes was evaluated by enzymatic oxidation of the glucose substrate in phosphate buffer through loading different concentrations of GOx. In situ generated H2O2 was decomposed by the as-synthesized Prussian blue nanoparticles, which serve as an excellent peroxidase mimetic. The functional enzyme polymersome system was utilized for in vitro detection of blood glucose values.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Documentation and methods used to support this study are available from Prof. Prem C. Pandey at the Indian Institute of Technology (BHU), Varanasi (pcpandey.apc@iitbhu.ac.in).

References

  1. C. Gao, E. Donath, H. Möhwald, J. Shen, spontaneous deposition of water-soluble substances into microcapsules: Phenomenon, mechanism, and application. Angew. Chem. 114, 3943 (2002)

    Article  Google Scholar 

  2. A.P. Johnston, C. Cortez, A.S. Angelatos, F. Caruso, Layer-by-layer engineered capsules and their applications. Curr. Opin. Colloid Interface Sci. 11, 203 (2006)

    Article  CAS  Google Scholar 

  3. S.M. Christensen, D. Stamou, Surface-based lipid vesicle reactor systems: Fabrication and applications. Soft Matter 3, 828–836 (2007)

    Article  CAS  Google Scholar 

  4. V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145 (2005)

    Article  CAS  Google Scholar 

  5. Y. Lin, Z. Li, Z. Chen, J. Ren, X. Qu, Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials 34, 2600 (2013)

    Article  CAS  Google Scholar 

  6. H. Peng, K. Rübsam, F. Jakob, U. Schwaneberg, A. Pich, Tunable enzymatic activity and enhanced stability of cellulase immobilized in biohybrid nanogels. Biomacromolecules 17, 3619 (2016)

    Article  CAS  Google Scholar 

  7. M.T. Reetz, A. Zonta, J. Simpelkamp, Efficient heterogeneous biocatalysts by entrapment of lipases in hydrophobic sol–gel materials. Angew. Chem. Int. Ed. 34, 301 (1995)

    Article  CAS  Google Scholar 

  8. C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 2013)

    Google Scholar 

  9. S. Radin, P. Ducheyne, T. Kamplain, B.H. Tan, Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release. J. Biomed. Mater. Res. A. 57, 313 (2001)

    Article  CAS  Google Scholar 

  10. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edn. (Wiley, Hoboken, 1980), p. 144

    Google Scholar 

  11. A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18 (2012)

    Article  Google Scholar 

  12. A. Vashist, A. Vashist, Y.K. Gupta, S. Ahmad, Recent advances in hydrogel based drug delivery systems for the human body. J. Mater. Chem. B. 2, 147 (2014)

    Article  CAS  Google Scholar 

  13. J. Jagur-Grodzinski, Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym. Adv. Technol. 21, 27 (2010)

    Article  CAS  Google Scholar 

  14. Y. Liu, Y. Li, W. Yang, Fabrication of highly b-oriented MFI monolayers on various substrates. Chem. Commun. 12, 1520 (2009)

    Article  CAS  Google Scholar 

  15. D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 7852 (2005)

    Article  CAS  Google Scholar 

  16. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005)

    Article  CAS  Google Scholar 

  17. D. Avnir, T. Coradin, O. Lev, J. Livage, Recent bio-applications of sol–gel materials. J. Mater. Chem. 16, 1013 (2006)

    Article  CAS  Google Scholar 

  18. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577 (2007)

    Article  CAS  Google Scholar 

  19. F. Yu, Y. Huang, A.J. Cole, V.C. Yang, The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials 30, 4716 (2009)

    Article  CAS  Google Scholar 

  20. A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez, Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. 121, 2344 (2009)

    Article  Google Scholar 

  21. S. Singh, T. Dosani, A.S. Karakoti, A. Kumar, S. Seal, W.T. Self, A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 32, 6745 (2011)

    Article  CAS  Google Scholar 

  22. W. He, Y. Liu, J. Yuan, J.J. Yin, X. Wu, X. Hu, K. Zhang, J. Liu, C. Chen, Y. Ji, Y. Guo, Au@ Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32, 1139 (2011)

    Article  CAS  Google Scholar 

  23. E.J. Cho, S. Jung, H.J. Kim, Y.G. Lee, K.C. Nam, H.J. Lee, H.J. Bae, Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem. Commun. 48, 886 (2012)

    Article  CAS  Google Scholar 

  24. M. Liu, H. Zhao, S. Chen, H. Yu, X. Quan, Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 6, 3142 (2012)

    Article  CAS  Google Scholar 

  25. Y. Jv, B. Li, R. Cao, Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 46, 8017 (2010)

    Article  CAS  Google Scholar 

  26. D.N. Tran, K.J. Balkus Jr., Perspective of recent progress in immobilization of enzymes. ACS Catal. 1, 956 (2011)

    Article  CAS  Google Scholar 

  27. K. Hosoya, C. Ohtsuki, T. Kawai, M. Kamitakahara, S.I. Ogata, T. Miyazaki, M. Tanihara, A novel covalently crosslinked gel of alginate and silane with the ability to form bone-like apatite. J. Biomed. Mater. Res. A. 71, 596 (2004)

    Article  CAS  Google Scholar 

  28. P.C. Pandey, S. Shukla, Y. Pandey, Mesoporous silica beads encapsulated with functionalized palladium nanocrystallites: Novel catalyst for selective hydrogen evolution. J. Mater. Res. 32, 3574 (2017)

    Article  CAS  Google Scholar 

  29. M. Gdaniec, W. Jankowski, M.J. Milewska, T. Połoñski, Supramolecular assemblies of hydrogen-bonded carboxylic acid dimers mediated by phenyl–pentafluorophenyl stacking interactions. Angew. Chem. 42, 3903 (2003)

    Article  CAS  Google Scholar 

  30. S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen, R.S. Ruoff, Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572 (2008)

    Article  CAS  Google Scholar 

  31. R.S. Underhill, A.V. Jovanovic, S.R. Carino, M. Varshney, D.O. Shah, D.M. Dennis, T.E. Morey, R.S. Duran, Oil-filled silica nanocapsules for lipophilic drug uptake: Implications for drug detoxification therapy. Chem. Mater. 14, 4919 (2002)

    Article  CAS  Google Scholar 

  32. H. Ogihara, J. Xie, J. Okagaki, T. Saji, Simple method for preparing superhydrophobic paper: Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 28, 4605 (2012)

    Article  CAS  Google Scholar 

  33. K.Y. Lee, J.A. Rowley, P. Eiselt, E.M. Moy, K.H. Bouhadir, D.J. Mooney, Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33, 4291 (2000)

    Article  CAS  Google Scholar 

  34. K.I. Draget, G. Skjåk-Bræk, B.A. Christensen, O. Gåserød, O. Smidsrød, Swelling and partial solubilization of alginic acid gel beads in acidic buffer. Carbohydr. Polym. 29, 209 (1996)

    Article  CAS  Google Scholar 

  35. D.R. Boyd, N.D. Sharma, N.I. Bowers, I.N. Brannigan, M.R. Groocock, J.F. Malone, G. McConville, C.C. Allen, Biocatalytic asymmetric dihydroxylation of conjugated mono-and poly-alkenes to yield enantiopure cyclic cis-diols. Adv. Synth. Catal. 347, 1081 (2005)

    Article  CAS  Google Scholar 

  36. D.J. Darensbourg, J.L. Rodgers, C.C. Fang, The copolymerization of carbon dioxide and [2-(3, 4-epoxycyclohexyl) ethyl] trimethoxysilane catalyzed by (Salen) CrCl. Formation of a CO2 soluble polycarbonate. Inorg. Chem. 42, 4498 (2003)

    Article  CAS  Google Scholar 

  37. H.N. Chang, G.H. Seong, I.K. Yoo, J.K. Park, J.H. Seo, Microencapsulation of recombinant Saccharomyces cerevisiae cells with invertase activity in liquid-core alginate capsules. Biotechnol. Bioeng. 51, 157 (1996)

    Article  Google Scholar 

  38. H. Zhu, R. Srivastava, J.Q. Brown, M.J. McShane, Combined physical and chemical immobilization of glucose oxidase in alginate microspheres improves stability of encapsulation and activity. Bioconjug. Chem. 16, 1451 (2005)

    Article  CAS  Google Scholar 

  39. B. Thu, P. Bruheim, T. Espevik, O. Smidsrød, P. Soon-Shiong, G. Skjåk-Bræk, Alginate polycation microcapsules: I. Interaction between alginate and polycation. Biomaterials 17, 1031 (1996)

    Article  CAS  Google Scholar 

  40. T. Ishida, N. Kinoshita, H. Okatsu, T. Akita, T. Takei, M. Haruta, Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew. Chem. 120, 9405 (2008)

    Article  Google Scholar 

  41. T. Tatsuma, Y. Okawa, T. Watanabe, Enzyme monolayer-and bilayer-modified tin oxide electrodes for the determination of hydrogen peroxide and glucose. Anal. Chem. 61, 2352 (1989)

    Article  CAS  Google Scholar 

  42. Z.F. Zhang, H. Cui, C.Z. Lai, L.J. Liu, Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal. Chem. 77, 3324 (2005)

    Article  CAS  Google Scholar 

  43. J.K. Robinson, M.J. Bollinger, J.W. Birks, Luminol/H2O2 chemiluminescence detector for the analysis of nitric oxide in exhaled breath. Anal. Chem. 71, 5131 (1999)

    Article  CAS  Google Scholar 

  44. T.I. Quickenden, P.D. Cooper, Increasing the specificity of the forensic luminol test for blood. Luminescence 16, 251 (2001)

    Article  CAS  Google Scholar 

  45. W.C. Ellis, C.T. Tran, M.A. Denardo, A. Fischer, A.D. Ryabov, T.J. Collins, Design of more powerful iron-TAML peroxidase enzyme mimics. J. Am. Chem. Soc. 131, 18052 (2009)

    Article  CAS  Google Scholar 

  46. Q. Wang, Z. Yang, X. Zhang, X. Xiao, C.K. Chang, B. Xu, A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew. Chem. Int. Ed. 46, 4285 (2007)

    Article  CAS  Google Scholar 

  47. Q. Wang, Z. Yang, X. Zhang, X. Xiao, C.K. Chang, B. Xu, A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew Chem. Int. Ed. Engl. 46(23), 4285 (2007)

    Article  CAS  Google Scholar 

  48. M. Sono, M.P. Roach, E.D. Coulter, J.H. Dawson, Heme-containing oxygenases. Chem. Rev. 96, 2841 (1996)

    Article  CAS  Google Scholar 

  49. G. Pelossof, R. Tel-Vered, J. Elbaz, I. Willner, Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. Anal. Chem. 82, 4396 (2010)

    Article  CAS  Google Scholar 

  50. M. Mba, M. Pontini, S. Lovat, C. Zonta, G. Bernardinelli, P.E. Kündig, G. Licini, C 3 vanadium (V) amine triphenolate complexes: Vanadium haloperoxidase structural and functional models. Inorg. Chem. 47, 8616 (2008)

    Article  CAS  Google Scholar 

  51. H.H. Deng, S.H. Weng, S.L. Huang, L.N. Zhang, A.L. Liu, X.H. Lin, W. Chen, Colorimetric detection of sulfide based on target-induced shielding against the peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 852, 218 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to SERB for granting VAJRA fellowship and DRDO for granting LSRB-316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Narayan.

Ethics declarations

Conflict of interest

The authors declare no competing conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P.C., Pandey, A.K. & Narayan, R.J. Designing organotrialkoxysilane-functionalized microscale enzyme carrier: Spherical polymersomes with tunable catalytic potential. Journal of Materials Research 36, 3010–3020 (2021). https://doi.org/10.1557/s43578-021-00296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00296-1

Keywords

Navigation