Skip to main content
Log in

Facile one-step synthesis of poly(styrene-glycidyl methacrylate)-Fe3O4 nanocomposite particles and application potency in glucose biosensors

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This research is aimed towards a facile one-step preparation of magnetic poly(styrene-glycidyl methacrylate)-Fe3O4 nanocomposite particles named as P(S-GMA)-Fe3O4. The nanocomposite particles are prepared by a simultaneous free-radical copolymerization and co-precipitation of Fe2+ and Fe3+ salts. Two variable w/w ratios of styrene to GMA (98/2 and 96/4) are used. But, the overall copolymer to iron oxide ratio is kept identical. The structural analyses and morphology revealed the uniform distribution of Fe3O4 nanoparticles and the nanocomposites showed paramagnetic property. The potentiality of nanocomposite particles as glucose bisenosors via adsorption of glucose oxidase (GOD) is investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A comparative analysis of the glucose concentration dependent current response suggested that the modified electrode fabricated from P(S-GMA)-Fe3O4(2) (w/w ratio, 98/2) possessed superior response to other electrodes made from PS, P(S-GMA), PS-Fe3O4 and P(S-GMA)-Fe3O4(4) (w/w ratio, 96/4), respectively. The P(S-GMA)-Fe3O4(2)/GOD/Pt biosensor could measure glucose in the range of 2.2 × 10− 4 to 6.0 × 10− 3 M with a sensitivity of 14.47 µA mM− 1 and exhibited a detection limit of 5.07 µM at a signal to noise ratio of 3. The value of Michaelis-Menten constant (Km) is calculated as 0.019 mM. Overall results indicate that P(S-GMA)-Fe3O4(2) nanocomposite prepared in one-step is suitable for use in glucose biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Behren S, Appel I (2016) Magnetic nanocomposites. Curr Opin Biotechnol 39:89–96. https://doi.org/10.1016/j.copbio.2016.02.005

    Article  CAS  Google Scholar 

  2. Bithi KA, Minami H, Hossain MK, Rahman MM, Rahman MA, Gafur MA, Ahmad H (2020) Cationic polyelectrolyte grafted mesoporous magnetic silica composite particles for targeted drug delivery and thrombolysis. Materialia 11:100676. https://doi.org/10.1016/j.mtla.2020.100676

    Article  CAS  Google Scholar 

  3. Tanjim M, Rahman MA, Rahman MM, Minami H, Hoque SM, Sharafat MK, Gafur MA, Ahmad H (2018) Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM–DMA) valve for controlled loading and release of biologically active molecules. Soft Matter 14:5469–5479. https://doi.org/10.1039/C8SM00560E

    Article  CAS  PubMed  Google Scholar 

  4. Padmavathy N, Chakraborty I, Kumar A, Roy A, Bose S, Chatterjee K (2022) Fe3O4@Ag and Ag@Fe3O4 core-shell nanoparticles for radio frequency shielding and bactericidal activity. ACS Appl Nano Mater 5:237–248. https://doi.org/10.1021/acsanm.1c02722

    Article  CAS  Google Scholar 

  5. Martins PM, Lima AC, Ribeiro S, Lanceros-Mendez S, Martins P (2021) Magnetic nanoparticles for biomedical applications: from the soul of the earth to the deep history of ourselves. ACS Appl Bio Mater 4:5839–5870. https://doi.org/10.1021/acsabm.1c00440

    Article  CAS  PubMed  Google Scholar 

  6. Xu Y-P, Zhou H-Y, Wang G-C, Zhang Y, Yang T, Zhao Y, Li R-T, Zhang R-R, Guo Y, Wang X, Li X-F, Qin C-F, Tang R (2020) Rational design of a replication-competent and inheritable magnetic viruses for targeting biomedical applications. Small 16:2002435. https://doi.org/10.1002/smll.202002435

    Article  CAS  Google Scholar 

  7. Kharey P, Indoliya A, Gupta R, Poddar R, Sharma D, Gupta S (2022) Near-infrared active superparamagnetic iron oxide nanoparticles for magnetomotive optical coherence tomography imaging and magnetic hyperthermia therapeutic application. J Magn Magn Mater 549:169038. https://doi.org/10.1016/j.jmmm.2022.169038

    Article  CAS  Google Scholar 

  8. Song X, Mo J, Fang Y, Luo S, Xu J, Wang X (2022) Synthesis of magnetic nanocomposite Fe3O4@ZIF-8@ZIF-67 and removal of tetracycline in water. Environ Sci Pollut Res 29:35204–35216. https://doi.org/10.1007/s11356-021-18042-9

    Article  CAS  Google Scholar 

  9. Liu F, Niu F, Peng N, Su Y, Yang Y (2015) Synthesis, characterization, and application of Fe3O4@SiO2-NH2 nanoparticles. RSC Adv 5:18128–18136. https://doi.org/10.1039/C4RA15968C

    Article  CAS  Google Scholar 

  10. Joshi S, Garg VK, Kataria N, Kadirvelu K (2019) Applications of Fe3O4@AC nanoparticles for dye removal from simulated wastewater. Chemosphere 236:124280. https://doi.org/10.1016/j.chemosphere.2019.07.011

    Article  CAS  PubMed  Google Scholar 

  11. Ma M, Hou P, Zhang P, Cao J, Loi H, Yue H, Tian G, Feng S (2020) Magnetic Fe3O4 nanoparticles as easily separable catalysts for efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol. Appl Catal A: General 602:117709. https://doi.org/10.1016/j.apcata.2020.117709

    Article  CAS  Google Scholar 

  12. Sarker MZ, Rahman MM, Minami H, Suzuki T, Rahman MA, Khan A, Hoque SM, Ahmad H (2022) Magnetite incorporated amine-functional SiO2 support for bimetallic Cu-Ni alloy nanoparticles produced highly effective nanocatalyst. Colloids Surf A Physicoochem Eng Aspects 647:129044. https://doi.org/10.1016/j.colsurfa.2022.129044

    Article  CAS  Google Scholar 

  13. Zhang W, Li X, Zou R, Wu H, Shi H, Yu S, Liu Y (2015) Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Sci Rep 5:11129. https://doi.org/10.1038/srep11129

    Article  PubMed  PubMed Central  Google Scholar 

  14. He C, Xie M, Hong F, Chai X, Mi H, Zhou X, Fan L, Zhang Q, Ngai T, Liu J (2016) A highly sensitive glucose biosensor based on gold nanoparticles/bovine serum albumin/Fe3O4 biocomposite nanoparticles. Electrochim Acta 222:1709–1715. https://doi.org/10.1016/j.electacta.2016.11.162

    Article  CAS  Google Scholar 

  15. Peng L, Luo Y, Xiong H, Yao S, Zhu M, Song H (2021) A novel amperometric glucose biosensor based on Fe3O4-chitosan-β-cyclodextrin/MWCNTs nanobiocomposite. Electroanalysis 33:723–732. https://doi.org/10.1002/elan.202060399

    Article  CAS  Google Scholar 

  16. Rocha-Santos TAP (2014) Sensors and biosensors based on magnetic nanoparticles. Trends Anal Chem 62:28–36. https://doi.org/10.1016/j.trac.2014.06.016

    Article  CAS  Google Scholar 

  17. Bakker E (2004) Electrochemical sensors. Anal Chem 76:3285–3298. https://doi.org/10.1021/ac049580z

    Article  CAS  PubMed  Google Scholar 

  18. Sanaeifar N, Rabiee M, Abdolrahim M, Tahriri M, Vashaee D, Tayebi L (2017) A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal Biochem 519:19–26. https://doi.org/10.1016/j.ab.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  19. Shabnam R, Rahman MA, Miah MAJ, Sharafat MK, Islam HMT, Gafur MA, Ahmad H (2017) Novel magnetically doped epoxide functional cross-linked hydrophobic poly(lauryl methacrylate) composite polymer particles for removal of as(III) from aqueous solution. Ind Eng Chem Res 56:7747–7756. https://doi.org/10.1021/acs.iecr.7b01741

    Article  CAS  Google Scholar 

  20. Bristy SS, Rahman MM, Rahman MM, Alam MA, Karim MR, Ahmad H (2019) Epoxide functionalized γ-Al2O3/Fe3O4/SiO2 nanocomposite particles and comparative adsorption behavior of a model reactive azo dye. Int J Appl Cer Technol 16:1239–1252. https://doi.org/10.1111/ijac.13141

    Article  CAS  Google Scholar 

  21. Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008) Iron-oxide nanoparticles-chitosan composite based glucose biosensor. Biosens Bioelectron 24:676–683. https://doi.org/10.1016/j.bios.2008.06.032

    Article  CAS  PubMed  Google Scholar 

  22. Dizajyekan BS, Jafari A, Hasani M, Vafaei-Sefti M, Fakhroueian DZ, Baghbansalehi M (2020) Surface modification of synthesized Fe3O4 super-paramagnetic nanoparticles and performance investigation in gelation parameters enhancement: application in enhanced oil recovery. Appl Nanosci 10:955–969. https://doi.org/10.1007/s13204-019-01187-y

    Article  CAS  Google Scholar 

  23. Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñmer P, Beloqui A (2020) Tunable polymeric scaffolds for enzyme immobilization. Front Bioeng Biotechnol 8:830. https://doi.org/10.3389/fbioe.2020.00830

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu S, Yu B, Wang S, Shen Y, Cong H (2020) Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv Colloid Interface Sci 281:102165. https://doi.org/10.1016/j.cis.2020.102165

    Article  CAS  PubMed  Google Scholar 

  25. Yang L, Ren X, Tang F, Zhang L (2009) A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film. Biosens Bioelectron 25:889–895. https://doi.org/10.1016/j.bios.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  26. Yee YC, Hashim R, Yahya ARM, Bustami Y (2019) Colorimetric analysis of glucose oxidase-magnetic cellulose nanocrystals (CNCs) for glucose detection. Sensors 19:2511. https://doi.org/10.3390/s19112511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang Z, Zhang C, Zhang J (2014) Potentiometric glucose biosensor based on core-shell Fe3O4-enzyme-polypyrrole nanoparticles. Biosens Bioelectron 51:268–273. https://doi.org/10.1016/j.bios.2013.07.054

    Article  CAS  PubMed  Google Scholar 

  28. Mao Q, Jing W, Gao W, Wei Z, Tian B, Liu M, Ren W, Jiang Z (2021) High-sensitivity enzymatic glucose sensor based on ZnO urchin-like nanostructure modified with Fe3O4 magnetic particles. Micromachines 12:977. https://doi.org/10.3390/mi12080977

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pakapongpan S, Pooarporn RP (2017) Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagent less glucose biosensor. Mater Sci Eng C 76:398–405. https://doi.org/10.1016/j.msec.2017.03.031

    Article  CAS  Google Scholar 

  30. Baghayeria M, Veisib H, Ghanei-Motlagh M (2017) Amperometric glucose biosensor based on immobilization of glucose ooxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sens Actuators B 249:321–330. https://doi.org/10.1016/j.snb.2017.04.100

    Article  CAS  Google Scholar 

  31. Bristy SS, Rahman MA, Tauer K, Minami H, Rahman MM, Ahmad H (2018) Preparation and characterization of magnetic γ-Al2O3 ceramic nanocomposite particles with variable Fe3O4 content and modification with epoxide functional polymer. Ceram Int 44:3951–3959. https://doi.org/10.1016/j.ceramint.2017.11.187

    Article  CAS  Google Scholar 

  32. Horák D, Trchová M, Beneš MJ, Veverka M, Pollert E (2010) Monodispersed magnetic composite poly(glycidyl methacrylate)/La0.75Sr0.25MnO3 microspheres by the dispersion polymerization. Polymer 51:3116–3122. https://doi.org/10.1016/j.polymer.2010.04.055

    Article  CAS  Google Scholar 

  33. Ahmad H, Alam MM, Rahman MA, Minami H, Gafur MA (2018) Epoxide functional temperature-sensitive semi-IPN hydrogel microspheres for isolating inorganic nanoparticles. Adv Polym Technol 37:21645. https://doi.org/10.1002/adv.21645

    Article  CAS  Google Scholar 

  34. Nahar Y, Rahman MA, Hossain MK, Sharafat MK, Karim MR, Elaissari A, Ochiai B, Ahmad H, Rahman MM (2020) A facile one-pot synthesis of poly(acrylic acid)-functionnalized magnetic iron oxide nanoparticles for suppressing reactive oxygen species generation and adsorption of biocatalyst. Mater Res Express 7:016102. https://doi.org/10.1088/2053-1591/ab5be1

    Article  CAS  Google Scholar 

  35. Karakus G, Ece A, Yaglioglu AS, Zengin HB, Karahan M (2017) Synthesis, structural characterization, and antiproliferative/cytotoxic effects of a novel modified poly(maleic anhydride-co-vinyl acetate)/doxorubicin conjugate. Polym Bull 74:2159–2184. https://doi.org/10.1007/s00289-016-1821-1

    Article  CAS  Google Scholar 

  36. Shabnam R, Miah MAJ, Sharafat MK, Alam MA, Islam HMT, Ahmad H (2019) Cumulative effect of hydrophobic PLMA and surface epoxide groups in composite polymer particles on adsorption behavior of congo red and direct red-75. Arab J Chem 12:4989–4999. https://doi.org/10.1016/j.arabjc.2016.10.016

    Article  CAS  Google Scholar 

  37. Hossain MK, Minami H, Hoque SM, Rahman MM, Sharafat MK, Begum MF, Islam ME, Ahmad H (2019) Mesoporous electromagnetic composite particles: electric current responsive release of biologically active molecules and antibacterial properties. Colloids Surf B Biointerfaces 181:85–93. https://doi.org/10.1016/j.colsurfb.2019.05.040

    Article  CAS  PubMed  Google Scholar 

  38. Asab G, Zereffa EA, Seghne TA (2020) Synthesis of silica-coated Fe3O4 nanoparticles by microemulsion method: characterization and evaluation of antimicrobial activity. Int J Biomater 2020:4783612. https://doi.org/10.1155/2020/4783612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X, Li H, Liu G, Deng Z, Wu S, Li P (2012) Magnetite-loaded fluorine–containing polymeric micelles for magnetic resonance imaging and drug delivery. Biomaterials 33:3013–3024. https://doi.org/10.1016/j.biomaterials.2011.12.042

    Article  CAS  PubMed  Google Scholar 

  40. Ahmad H, Nurunnabi M, Rahman MM, Kumar K, Tauer K, Minami H, Gafur MA (2014) Magnetically doped multi stimuli-responsive hydrogel microspheres with IPN structure and application in dye removal. Colloids Surf A Physicochem Eng Asp 459:39–47. https://doi.org/10.1016/j.colsurfa.2014.06.038

    Article  CAS  Google Scholar 

  41. Chen MZ, Chu CY, Mansel BW, Chang PC (2021) Hierarchical structure in poly(N-vinyl carbazole)/Fe3O4 nanocomposites and the relevant magnetic coercivity. Soft Matter 17:3055–3067. https://doi.org/10.1039/D0SM02275F

    Article  CAS  PubMed  Google Scholar 

  42. Squillace O, Esnault C, Pilard J–F, Brotons G (2019) Electrodes for membrane surface science. Bilayer lipid membranes tethered by commercial surfactants on electrochemical sensors. ACS Sens 4:1337–1345. https://doi.org/10.1021/acssensors.9b00267

    Article  CAS  PubMed  Google Scholar 

  43. Clerico A, Zaninotto M, Padoan A, Masotti S, Musetti V, Prontera C, Ndreu R, Zucchelli G, Passino C, Migliardi M, Plebani M (2019) Evaluation of analytical performance of immunoassay methods for cTnI and cTnT: from theory to practice. Adv Clin Chem 93:239–262. https://doi.org/10.1016/bs.acc.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  44. Gao X, Du X, Liu D, Gao H, Wang P, Yang J (2020) Core-shell gold-nickel nanostructures as highly selective and stable nonenzymatic glucose sensor for fermentation process. Sci Rep 10:1365. https://doi.org/10.1038/s41598-020-58403-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tasca F, Zafar MN, Harreither W, Noll G, Ludwig R, Gorton L (2011) A third generation glucose biosensor based on cellobiose dehydrogenase from Corynascus thermophilus and single-walled carbon nanotubes. Analyst 136:2033–2036. https://doi.org/10.1039/C0AN00311E

    Article  CAS  PubMed  Google Scholar 

  46. Jiang X, Wu Y, Mao X, Cui X, Zhu L (2011) Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite. Sens Actuators B 153:158–163. https://doi.org/10.1016/j.snb.2010.10.023

    Article  CAS  Google Scholar 

  47. Lu BW, Chen WC (2006) A disposable glucose biosensor based on drop-coating of screen-printed carbon electrodes with magnetic nanoparticles. J Magn Magn Mater 304:400–402. https://doi.org/10.1016/j.jmmm.2006.01.222

    Article  CAS  Google Scholar 

  48. Shukla S, Deshpande SR, Shukla SK, Tiwari A (2012) Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite. Talanta 99:283–287. https://doi.org/10.1016/j.talanta.2012.05.052

    Article  CAS  PubMed  Google Scholar 

  49. Paul G, Verma S, Jalil O, Thakur D, Pandey CM, Kumar D (2021) PEDOT: PSS-grafted graphene oxide-titanium dioxide nanohybrid-based conducting paper for glucose detection. Polym Adv Technol 32:1774–1782. https://doi.org/10.1002/pat.5213

    Article  CAS  Google Scholar 

  50. Lin MS, Leu HJ (2005) A Fe3O4-based chemical sensor for cathodic determination of hydrogen peroxide. Electroanalysis 17:2068–2073. https://doi.org/10.1002/elan.200503335

    Article  CAS  Google Scholar 

  51. Lee J, Lee D, Oh E, Kim J, Kim YP, Jin S, Kim HS, Hwang Y, Kwak JH, Park JG, Shin CH, Kim J, Hyeon T (2005) Preparation of a magnetically switchable bio-electrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angew Chem Int Ed 44:7427–7432. https://doi.org/10.1002/anie.200502995

    Article  CAS  Google Scholar 

  52. Luo XL, Xu JJ, Zhao W, Chen HY (2004) Glucose biosensor based on ENFET doped with SiO2 nanoparticles. Sens Actuators B 97:249–255. https://doi.org/10.1016/j.snb.2003.08.024

    Article  CAS  Google Scholar 

  53. Li X, Du Y, Wang H, Ma H, Wu D, Ren X, Wei Q, Xu J–J (2022) Self-supply of H2O2 and O2 by hydrolyzing CaO2 to enhance the electrochemiluminescence of luminol based on closed bipolar electrode. Anal Chem 92:12693–12699. https://doi.org/10.1021/acs.analchem.0c03170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports were obtained from UGC, Dhaka. Instrument support from Central Science Laboratory of Rajshahi University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Ahmad.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The Authors confrm that there is no confict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.K., Sharafat, M.K., Minami, H. et al. Facile one-step synthesis of poly(styrene-glycidyl methacrylate)-Fe3O4 nanocomposite particles and application potency in glucose biosensors. J Polym Res 30, 118 (2023). https://doi.org/10.1007/s10965-023-03498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03498-9

Keywords

Navigation