Skip to main content

Advertisement

Log in

Additive manufacturing of Co–Cr alloys for biomedical applications: A concise review

  • Invited Feature Paper-Review
  • Focus Issue: 3D Printing of Biomedical Materials and Device
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Metal additive manufacturing processes offer unique opportunities for the biomedical industry owing to their ability to produce custom-designed implants with near-net shape and intricate geometry. Co–Cr alloys are among the most popular metallic biomaterials due to their excellent resistance to both corrosion and wear. Several studies have been reported in recent years on studying the processing-structure–property relationships in additively manufactured Co–Cr alloys. However, there is a significant gap in knowledge of critical issues such as the microstructural features and properties of additively manufactured parts as well as the role of the processing parameters and post-manufacturing treatments. The performance of the additively manufactured Co–Cr alloys for biomedical applications such as fatigue, wear, corrosion, and the biological response is poorly characterized as yet. This article presents an overview of the existing literature available on additively manufactured Co–Cr alloys and identifies challenges and opportunities for their use in biomedical implants.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

There are no original data associated with this manuscript.

References

  1. M. Long, H. Rack, Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19, 1621–1639 (1998)

    CAS  Google Scholar 

  2. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog. Mater Sci. 54, 397–425 (2009)

    CAS  Google Scholar 

  3. K. Das, V.K. Balla, A. Bandyopadhyay, S. Bose, Surface modification of laser-processed porous titanium for load-bearing implants. Scr. Mater. 59, 822–825 (2008)

    CAS  Google Scholar 

  4. Q. Chen, G.A. Thouas, Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 87, 1–57 (2015)

    Google Scholar 

  5. S. Ford, M. Despeisse, Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573–1587 (2016)

    Google Scholar 

  6. C. Hodonou, M. Balazinski, M. Brochu, C. Mascle, Material-design-process selection methodology for aircraft structural components: application to additive vs subtractive manufacturing processes. Int. J. Adv. Manuf. Technol. 103, 1509–1517 (2019)

    Google Scholar 

  7. W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)

    CAS  Google Scholar 

  8. S. Bose, D. Ke, H. Sahasrabudhe, A. Bandyopadhyay, Additive manufacturing of biomaterials. Prog. Mater Sci. 93, 45–111 (2018)

    Google Scholar 

  9. S. Bose, S.F. Robertson, A. Bandyopadhyay, Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 66, 6–22 (2018)

    CAS  Google Scholar 

  10. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components—process, structure and properties. Prog. Mater Sci. 92, 112–224 (2018)

    CAS  Google Scholar 

  11. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57, 133–164 (2012)

    CAS  Google Scholar 

  12. L.E. Murr, S.M. Gaytan, E. Martinez, F. Medina, R.B. Wicker, Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int. J. Biomater. 2012, 245727 (2012)

    Google Scholar 

  13. A. Bandyopadhyay, A. Shivaram, S. Tarafder, H. Sahasrabudhe, D. Banerjee, S. Bose, In vivo response of laser processed porous titanium implants for load-bearing implants. Ann. Biomed. Eng. 45, 249–260 (2017)

    Google Scholar 

  14. W. Xue, B.V. Krishna, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 3, 1007–1018 (2007)

    CAS  Google Scholar 

  15. M. Vignesh, G. Ranjith Kumar, M. Sathishkumar, M. Manikandan, G. Rajyalakshmi, R. Ramanujam, N. Arivazhagan, Development of biomedical implants through additive manufacturing: a review. J. Mater. Eng. Perform. (2021). https://doi.org/10.1007/s11665-021-05578-7

    Article  Google Scholar 

  16. B. Konieczny, A. Szczesio-Wlodarczyk, J. Sokolowski, K. Bociong, Challenges of Co–Cr alloy additive manufacturing methods in dentistry—the current state of knowledge (systematic review). Materials 13, 3524 (2020)

    CAS  Google Scholar 

  17. T. Narushima, K. Ueda, Alfirano, Co-Cr alloys as effective metallic biomaterials, in Advances in Metallic Biomaterials, ed. by M. Niinomi, T. Narushima, M. Nakai (Springer, Berlin, 2015)

    Google Scholar 

  18. Y.S. Al Jabbari, Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. J. Adv. Prosthodont. 6, 138–145 (2014)

    Google Scholar 

  19. Anon ASTM F75-18, Standard Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Castings and Casting Alloy for Surgical Implants (UNS R30075), ASTM International, West Conshohocken, PA, 2018, www.astm.org

  20. P. Mengucci, G. Barucca, A. Gatto, E. Bassoli, L. Denti, F. Fiori, E. Girardin, P. Bastianoni, B. Rutkowski, A. Czyrska-Filemonowicz, Effects of thermal treatments on microstructure and mechanical properties of a Co–Cr–Mo–W biomedical alloy produced by laser sintering. J. Mech. Behav. Biomed. Mater. 60, 106–117 (2016)

    CAS  Google Scholar 

  21. P. Stenlund, S. Kurosu, Y. Koizumi, F. Suska, H. Matsumoto, A. Chiba, A. Palmquist, Osseointegration enhancement by Zr doping of Co-Cr-Mo implants fabricated by electron beam melting. Addit. Manuf. 6, 6–15 (2015)

    CAS  Google Scholar 

  22. Y. Lu, S. Wu, Y. Gan, J. Li, C. Zhao, D. Zhuo, J. Lin, Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application. Mater. Sci. Eng., C 49, 517–525 (2015)

    CAS  Google Scholar 

  23. S.-H. Sun, Y. Koizumi, S. Kurosu, Y.-P. Li, H. Matsumoto, A. Chiba, Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting. Acta Mater. 64, 154–168 (2014)

    CAS  Google Scholar 

  24. G. Barucca, E. Santecchia, G. Majni, E. Girardin, E. Bassoli, L. Denti, A. Gatto, L. Iuliano, T. Moskalewicz, P. Mengucci, Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering. Mater. Sci. Eng., C 48, 263–269 (2015)

    CAS  Google Scholar 

  25. Z. Wang, S.Y. Tang, S. Scudino, Y.P. Ivanov, R.T. Qu, D. Wang, C. Yang, W.W. Zhang, A.L. Greer, J. Eckert, K.G. Prashanth, Additive manufacturing of a martensitic Co–Cr–Mo alloy: towards circumventing the strength–ductility trade-off. Addit. Manuf. 37, 101725 (2021)

    CAS  Google Scholar 

  26. A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, T. Hanawa, Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications. J. Mech. Behav. Biomed. Mater. 21, 67–76 (2013)

    CAS  Google Scholar 

  27. K.K. Bawane, D. Srinivasan, D. Banerjee, Microstructural evolution and mechanical properties of direct metal laser-sintered (DMLS) CoCrMo after heat treatment. Metall. Mater. Trans. A 49, 3793–3811 (2018)

    CAS  Google Scholar 

  28. S.M. Gaytan, L.E. Murr, E. Martinez, J.L. Martinez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metall. Mater. Trans. A 41, 3216–3227 (2010)

    CAS  Google Scholar 

  29. K. Monroy, J. Delgado, J. Ciurana, Study of the pore formation on CoCrMo alloys by selective laser melting manufacturing process. Procedia Eng. 63, 361–369 (2013)

    CAS  Google Scholar 

  30. X. Zhou, D. Wang, X. Liu, D. Zhang, S. Qu, J. Ma, G. London, Z. Shen, W. Liu, 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT. Acta Mater. 98, 1–16 (2015)

    CAS  Google Scholar 

  31. N. Nadammal, T. Mishurova, T. Fritsch, I. Serrano-Munoz, A. Kromm, C. Haberland, P.D. Portella, G. Bruno, Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing. Addit. Manuf. 38, 101792 (2021)

    CAS  Google Scholar 

  32. B. Qian, K. Saeidi, L. Kvetková, F. Lofaj, C. Xiao, Z. Shen, Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting. Dent. Mater. 31, 1435–1444 (2015)

    CAS  Google Scholar 

  33. X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, Z. Shen, Textures formed in a CoCrMo alloy by selective laser melting. J. Alloys Compd. 631, 153–164 (2015)

    CAS  Google Scholar 

  34. Y. Kajima, A. Takaichi, T. Nakamoto, T. Kimura, Y. Yogo, M. Ashida, H. Doi, N. Nomura, H. Takahashi, T. Hanawa, N. Wakabayashi, Fatigue strength of Co–Cr–Mo alloy clasps prepared by selective laser melting. J. Mech. Behav. Biomed. Mater. 59, 446–458 (2016)

    CAS  Google Scholar 

  35. Y. Lu, S. Wu, Y. Gan, S. Zhang, S. Guo, J. Lin, J. Lin, Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions. J. Mech. Behav. Biomed. Mater. 55, 179–190 (2016)

    CAS  Google Scholar 

  36. T. Takashima, Y. Koizumi, Y. Li, K. Yamanaka, T. Saito, A. Chiba, Effect of building position on phase distribution in Co-Cr-Mo alloy additive manufactured by electron-beam melting. Mater. Trans. 57, 2041–2047 (2016)

    CAS  Google Scholar 

  37. Z.W. Chen, M.A.L. Phan, K. Darvish, Grain growth during selective laser melting of a Co–Cr–Mo alloy. J. Mater. Sci. 52, 7415–7427 (2017)

    CAS  Google Scholar 

  38. M. Zhang, Y. Yang, C. Song, Y. Bai, Z. Xiao, An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting. J. Alloys Compd. 750, 878–886 (2018)

    CAS  Google Scholar 

  39. Y. Kajima, A. Takaichi, N. Kittikundecha, T. Nakamoto, T. Kimura, N. Nomura, A. Kawasaki, T. Hanawa, H. Takahashi, N. Wakabayashi, Effect of heat-treatment temperature on microstructures and mechanical properties of Co–Cr–Mo alloys fabricated by selective laser melting. Mater. Sci. Eng., A 726, 21–31 (2018)

    CAS  Google Scholar 

  40. D. Wei, Y. Koizumi, A. Chiba, K. Ueki, K. Ueda, T. Narushima, Y. Tsutsumi, T. Hanawa, Heterogeneous microstructures and corrosion resistance of biomedical Co-Cr-Mo alloy fabricated by electron beam melting (EBM). Addit. Manuf. 24, 103–114 (2018)

    CAS  Google Scholar 

  41. D. Wei, A. Anniyaer, Y. Koizumi, K. Aoyagi, M. Nagasako, H. Kato, A. Chiba, On microstructural homogenization and mechanical properties optimization of biomedical Co-Cr-Mo alloy additively manufactured by using electron beam melting. Addit. Manuf. 28, 215–227 (2019)

    CAS  Google Scholar 

  42. D.D. Xiang, P. Wang, X.P. Tan, S. Chandra, C. Wang, M.L.S. Nai, S.B. Tor, W.Q. Liu, E. Liu, Anisotropic microstructure and mechanical properties of additively manufactured Co–Cr–Mo alloy using selective electron beam melting for orthopedic implants. Mater. Sci. Eng., A 765, 138270 (2019)

    CAS  Google Scholar 

  43. E. Seki, Y. Kajima, A. Takaichi, N. Kittikundecha, H.H.W. Cho, H.L. Htat, H. Doi, T. Hanawa, N. Wakabayashi, Effect of heat treatment on the microstructure and fatigue strength of CoCrMo alloys fabricated by selective laser melting. Mater. Lett. 245, 53–56 (2019)

    CAS  Google Scholar 

  44. A. Takaichi, Y. Kajima, N. Kittikundecha, H.L. Htat, H.H. Wai Cho, T. Hanawa, T. Yoneyama, N. Wakabayashi, Effect of heat treatment on the anisotropic microstructural and mechanical properties of Co–Cr–Mo alloys produced by selective laser melting. J. Mech. Behav. Biomed. Mater. 102, 103496 (2020)

    CAS  Google Scholar 

  45. S. Gaytan, L. Murr, D. Ramirez, B. Machado, E. Martinez, D. Hernandez, J. Martinez, F. Medina, R. Wicker, A TEM study of cobalt-base alloy prototypes fabricated by EBM. Mater. Sci. Appl. 2, 355–363 (2011)

    CAS  Google Scholar 

  46. R. Esmaeilpour, H. Kim, T. Park, F. Pourboghrat, B. Mohammed, Comparison of 3D yield functions for finite element simulation of single point incremental forming (SPIF) of aluminum 7075. Int. J. Mech. Sci. 133, 544–554 (2017)

    Google Scholar 

  47. S. Yager, J. Ma, H. Ozcan, H.I. Kilinc, A.H. Elwany, I. Karaman, Mechanical properties and microstructure of removable partial denture clasps manufactured using selective laser melting. Addit. Manuf. 8, 117–123 (2015)

    CAS  Google Scholar 

  48. S.-H. Lee, E. Takahashi, N. Nomura, A. Chiba, Effect of heat treatment on microstructure and mechanical properties of Ni- and C-free Co–Cr–Mo alloys for medical applications. Mater. Trans. 46, 1790–1793 (2005)

    CAS  Google Scholar 

  49. K.-S. Kim, J.-W. Hwang, K.-A. Lee, Effect of building direction on the mechanical anisotropy of biocompatible Co–Cr–Mo alloy manufactured by selective laser melting process. J. Alloys Compd. 834, 155055 (2020)

    CAS  Google Scholar 

  50. Anon ASTM F3213-17, Standard for Additive Manufacturing—Finished Part Properties—Standard Specification for Cobalt-28 Chromium-6 Molybdenum via Powder Bed Fusion, ASTM International, West Conshohocken, PA, 2017, www.astm.org

  51. P. Hegele, J. von Kobylinski, L. Hitzler, C. Krempaszky, E. Werner, In-situ XRD study of phase transformation kinetics in a Co-Cr-W-alloy manufactured by laser powder-bed fusion. Crystals 11, 176 (2021)

    CAS  Google Scholar 

  52. S.L. Sing, S. Huang, W.Y. Yeong, Effect of solution heat treatment on microstructure and mechanical properties of laser powder bed fusion produced cobalt-28chromium-6molybdenum. Mater. Sci. Eng., A 769, 138511 (2020)

    CAS  Google Scholar 

  53. S. Pal, N. Gubeljak, T. Bončina, R. Hudák, T. Toth, J. Zivcak, G. Lojen, N. Leben, I. Drstvenšek, The effects of locations on the build tray on the quality of specimens in powder bed additive manufacturing. Int. J. Adv. Manuf. Technol. 112, 1159–1170 (2021)

    Google Scholar 

  54. J.B. Vander Sande, J.R. Coke, J. Wulff, A transmission electron microscopy study of the mechanisms of strengthening in heat-treated Co-Cr-Mo-C alloys. Metall. Trans. A 7, 389–397 (1976)

    Google Scholar 

  55. K. Yamanaka, M. Mori, A. Chiba, Mechanical properties of as-forged Ni-free Co–29Cr–6Mo alloys with ultrafine-grained microstructure. Mater. Sci. Eng., A 528, 5961–5966 (2011)

    CAS  Google Scholar 

  56. K. Yamanaka, M. Mori, S. Sato, A. Chiba, Stacking-fault strengthening of biomedical Co–Cr–Mo alloy via multipass thermomechanical processing. Sci. Rep. 7, 10808 (2017)

    Google Scholar 

  57. M.V. Mergulhão, C.E. Podestá, M.D.M. das Neves, Valuation of mechanical properties and microstructural characterization of ASTM F75 Co-Cr alloy obtained by selective laser melting (SLM) and casting techniques. Mater. Sci. Forum 899, 323–328 (2017)

    Google Scholar 

  58. W. Wei, Y. Zhou, W. Liu, N. Li, J. Yan, H. Li, Microstructural characterization, mechanical properties, and corrosion resistance of dental Co-Cr-Mo-W alloys manufactured by selective laser melting. J. Mater. Eng. Perform. 27, 5312–5320 (2018)

    CAS  Google Scholar 

  59. X. Dong, Y. Zhou, Q. Sun, Y. Qu, H. Shi, W. Liu, H. Peng, B. Zhang, S. Xu, J. Yan, N. Li, Fatigue behavior of biomedical Co–Cr–Mo–W alloy fabricated by selective laser melting. Mater. Sci. Eng., A 795, 140000 (2020)

    CAS  Google Scholar 

  60. S.M.J. Razavi, A. Avanzini, G. Cornacchia, L. Giorleo, F. Berto, Effect of heat treatment on fatigue behavior of as-built notched Co-Cr-Mo parts produced by selective laser melting. Int. J. Fatigue 142, 105926 (2021)

    CAS  Google Scholar 

  61. D. Wei, Y. Koizumi, T. Takashima, M. Nagasako, A. Chiba, Fatigue improvement of electron beam melting-fabricated biomedical Co–Cr–Mo alloy by accessible heat treatment. Mater. Res. Lett. 6, 93–99 (2018)

    CAS  Google Scholar 

  62. T. Puskar, D. Jevremovic, R.J. Williams, D. Eggbeer, D. Vukelic, I. Budak, A comparative analysis of the corrosive effect of artificial saliva of variable pH on DMLS and cast Co-Cr-Mo dental alloy. Materials 7, 6486–6501 (2014)

    Google Scholar 

  63. X. Dong, Q. Sun, Y. Zhou, Y. Qu, H. Shi, B. Zhang, S. Xu, W. Liu, N. Li, J. Yan, Influence of microstructure on corrosion behavior of biomedical Co-Cr-Mo-W alloy fabricated by selective laser melting. Corros. Sci. 170, 108688 (2020)

    CAS  Google Scholar 

  64. X. Xin, J. Chen, N. Xiang, B. Wei, Surface properties and corrosion behavior of Co–Cr alloy fabricated with selective laser melting technique. Cell Biochem. Biophys. 67, 983–990 (2013)

    CAS  Google Scholar 

  65. X.-Z. Xin, J. Chen, N. Xiang, Y. Gong, B. Wei, Surface characteristics and corrosion properties of selective laser melted Co–Cr dental alloy after porcelain firing. Dent. Mater. 30, 263–270 (2014)

    CAS  Google Scholar 

  66. J. Luo, S. Wu, Y. Lu, S. Guo, Y. Yang, C. Zhao, J. Lin, T. Huang, J. Lin, The effect of 3 wt% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting. J. Mater. Sci. Mater. Med. 29, 37 (2018)

    Google Scholar 

  67. W.J. Wang, K.C. Yung, H.S. Choy, T.Y. Xiao, Z.X. Cai, Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys. Appl. Surf. Sci. 443, 167–175 (2018)

    CAS  Google Scholar 

  68. K.M. Mantrala, M. Das, V.K. Balla, C.S. Rao, V.V.S. Kesava Rao, Additive manufacturing of Co-Cr-Mo alloy: influence of heat treatment on microstructure, tribological, and electrochemical properties. Front. Mech. Eng. 1, 2 (2015)

    Google Scholar 

  69. X. Liu, S. Sheng, H. Yang, Z. He, Y. Yang, N. Sheng, H. Fang, G. Shi, Uniform, anticorrosive, and antiabrasive coatings on metallic surfaces for cation-metal and cation − π interactions. ACS Appl. Mater. Interfaces. 12, 38638–38646 (2020)

    CAS  Google Scholar 

  70. Y. Kajima, A. Takaichi, N. Kittikundecha, H.L. Htat, H.H.W. Cho, Y. Tsutsumi, T. Hanawa, N. Wakabayashi, T. Yoneyama, Reduction in anisotropic response of corrosion properties of selective laser melted Co–Cr–Mo alloys by post-heat treatment. Dent. Mater. 37, e98–e108 (2021)

    CAS  Google Scholar 

  71. W.Q. Toh, Z. Sun, X. Tan, E. Liu, S.B. Tor, C.K. Chua, Comparative study on tribological behavior of Ti-6Al-4V and Co-Cr-Mo samples additively manufactured with electron beam melting, in Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016) (2016), pp. 342–348

  72. Ş.H. Atapek, D. Ts, G. Aktaş, Ş. Polat, D. Dzhendov, D. Pavlova, M. Simov, Tribo-corrosion behavior of cast and selective laser melted co-cr alloy for dental applications. Mach. Technol. Mater. 10, 61–64 (2016)

    CAS  Google Scholar 

  73. K.M. Mantrala, M. Das, V.K. Balla, C. Srinivasa Rao, V.V.S. Kesava Rao, Laser-deposited CoCrMo alloy: microstructure, wear, and electrochemical properties. J. Mater. Res. 29, 2021–2027 (2014)

    CAS  Google Scholar 

  74. H. Sahasrabudhe, S. Bose, A. Bandyopadhyay, Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: processing and wear induced damage evaluation. Acta Biomater. 66, 118–128 (2018)

    CAS  Google Scholar 

  75. M. Isik, J.D. Avila, A. Bandyopadhyay, Alumina and tricalcium phosphate added CoCr alloy for load-bearing implants. Addit. Manuf. 36, 101553 (2020)

    CAS  Google Scholar 

  76. A.T. Sidambe, Effects of build orientation on 3D-printed Co-Cr-Mo: surface topography and L929 fibroblast cellular response. Int. J. Adv. Manuf. Technol. 99, 867–880 (2018)

    Google Scholar 

  77. S. Brogini, M. Sartori, G. Giavaresi, P. Cremascoli, F. Alemani, D. Bellini, L. Martini, M. Maglio, S. Pagani, M. Fini, Osseointegration of additive manufacturing Ti–6Al–4 V and Co–Cr–Mo alloys, with and without surface functionalization with hydroxyapatite and type I collagen. J. Mech. Behav. Biomed. Mater. 115, 104262 (2021)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Nanomission program of the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India (DST/NM/NB/2018/119(G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Chatterjee.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, S., Soni, R., Suwas, S. et al. Additive manufacturing of Co–Cr alloys for biomedical applications: A concise review. Journal of Materials Research 36, 3746–3760 (2021). https://doi.org/10.1557/s43578-021-00244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00244-z

Keywords

Navigation