Skip to main content
Log in

Variation in the microstructure and mechanical properties of permanent mold cast Al–3Li–2Mg–0.1Zr alloy with Zn addition

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this research, microstructure characterization, phase analysis and tensile tests were performed to investigate the influence of Zn content upon permanent mold cast Al–3Li–2Mg–0.1Zr alloy. Results showed that the most significant grain refinement was caused by 1 wt% Zn as constitutional undercooling was increased with Zn addition and decreased with the formation of (Al, Zn)49Mg32 phases. To dissolve second phases in as-cast alloys, including Al3Li, Al12Mg17, Al2MgLi, AlLi and (Al, Zn)49Mg32, three-stage solution treatment (500 °C/10 h + 535 °C/10 h + 560 °C/20 h) was designed. After quenching and artificial aging for 8 h at 175 °C, Al–3Li–2Mg–1Zn–0.1Zr alloy presented the optimum comprehensive mechanical properties. The elongation, yield strength and ultimate tensile strength reached 6.9%, 221 MPa and 351 MPa, respectively. The performance improvement with Zn addition was mainly attributed to grain refinement and solution strengthening, while the composition of precipitates was almost unaffected.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data will be made available at reasonable request.

References

  1. K. Lv, C. Zhu, J. Zheng, X. Wang, B. Chen, Precipitation of T1 phase in 2198 Al–Li alloy studied by atomic-resolution HAADF-STEM. J. Mater. Res. 34(20), 3535–3544 (2019). https://doi.org/10.1557/jmr.2019.136

    Article  CAS  Google Scholar 

  2. Y. Zou, X. Chen, B. Chen, Corrosion behavior of 2198 Al–Cu–Li alloy in different aging stages in 3.5 wt% NaCl aqueous solution. J. Mater. Res. 33, 1011–1022 (2018). https://doi.org/10.1557/jmr.2018.33

    Article  CAS  Google Scholar 

  3. L. Zhong, W. Gao, Z. Feng, Z. Lu, G. Mao, Microstructure characteristics and constitutive modeling for elevated temperature flow behavior of Al–Cu–Li X2A66 alloy. J. Mater. Res. 33(8), 912–922 (2018). https://doi.org/10.1557/jmr.2017.466

    Article  CAS  Google Scholar 

  4. Y. Guo, Z. Huang, G. Jin, Research status of corrosion Al-Li alloy in acid medium. IOP Conf. Ser. (2019). https://doi.org/10.1088/1757-899x/612/2/022031

    Article  Google Scholar 

  5. A. Chen, G. Wu, L. Zhang, X. Zhang, C. Shi, Y. Li, Microstructural characteristics and mechanical properties of cast Al-3Li-xCu-0.2Zr alloy. Mater. Sci. Eng. A 677, 29–40 (2016). https://doi.org/10.1016/j.msea.2016.09.040

    Article  CAS  Google Scholar 

  6. P. Zhang, M. Chen, Progress in characterization methods for thermoplastic deforming constitutive models of Al–Li alloys: a review. J. Mater. Sci. 55(23), 9828–9847 (2020). https://doi.org/10.1007/s10853-020-04682-8

    Article  CAS  Google Scholar 

  7. A. Medjahed, A. Henniche, M. Derradji, T. Yu, Y. Wang, R. Wu, L. Hou, J. Zhang, X. Li, M. Zhang, Effects of Cu/Mg ratio on the microstructure, mechanical and corrosion properties of Al–Li–Cu-Mg-X alloys. Mater. Sci. Eng. A 718, 241–249 (2018). https://doi.org/10.1016/j.msea.2018.01.118

    Article  CAS  Google Scholar 

  8. Y. Peng, A. Chen, L. Zhang, W. Liu, G. Wu, Effect of solution treatment on microstructure and mechanical properties of cast Al–3Li–1.5Cu–0.2Zr alloy. J. Mater. Res. 31, 1124–1132 (2016). https://doi.org/10.1557/jmr.2016.103

    Article  CAS  Google Scholar 

  9. C. Shi, G. Wu, L. Zhang, X. Zhang, J. Sun, J. Zhang, Microstructures and mechanical properties of ultralight cast Al-3Li-XMg-0.1Zr alloys. Mater. Charact. (2020). https://doi.org/10.1016/j.matchar.2020.110698

    Article  Google Scholar 

  10. H. Ning, J. Li, P. Ma, Y. Chen, X. Zhang, K. Zhang, R. Zhang, Evolution of aging precipitates in an Al–Li alloy with 15 wt% Li concentration. Vacuum (2020). https://doi.org/10.1016/j.vacuum.2020.109677

    Article  Google Scholar 

  11. Y. Ma, J. Li, R. Zhang, J. Tang, C. Huang, H. Li, Z. Zheng, Strength and structure variation of 2195 Al-Li alloy caused by different deformation processes of hot extrusion and cold-rolling. Trans. Nonferrous Met. Soc. China 30(4), 835–849 (2020). https://doi.org/10.1016/s1003-6326(20)65258-x

    Article  CAS  Google Scholar 

  12. J. Zhang, G. Wu, L. Zhang, X. Zhang, C. Shi, J. Sun, Effect of Zn on precipitation evolution and mechanical properties of a high strength cast Al–Li–Cu alloy. Mater. Charact. (2020). https://doi.org/10.1016/j.matchar.2019.110089

    Article  Google Scholar 

  13. D. Liu, Y. Ma, J. Li, R. Zhang, H. Iwaoka, S. Hirosawa, Precipitate microstructures, mechanical properties and corrosion resistance of Al-1.0 wt%Cu-2.5 wt%Li alloys with different micro-alloyed elements addition. Mater. Charact. (2020). https://doi.org/10.1016/j.matchar.2020.110528

    Article  Google Scholar 

  14. D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Z. Hildebrand, Grain refinement of magnesium alloys. Metall. Mater. Trans. A 36(7), 1669–1679 (2005). https://doi.org/10.1007/s11661-005-0030-6

    Article  Google Scholar 

  15. Z. Zareian, M. Emamy, M. Malekan, H. Mirzadeh, W.J. Kim, A. Bahmani, Tailoring the mechanical properties of Mg–Zn magnesium alloy by calcium addition and hot extrusion process. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.138929

    Article  Google Scholar 

  16. R. Mahjoub, K.J. Laws, N. Stanford, M. Ferry, General trends between solute segregation tendency and grain boundary character in aluminium: an ab inito study. Acta Mater. 158, 257–268 (2018). https://doi.org/10.1016/j.actamat.2018.07.069

    Article  CAS  Google Scholar 

  17. D. Zhao, O.M. Løvvik, K. Marthinsen, Y. Li, Segregation of Mg, Cu and their effects on the strength of Al Σ5 (210)[001] symmetrical tilt grain boundary. Acta Mater. 145, 235–246 (2018). https://doi.org/10.1016/j.actamat.2017.12.023

    Article  CAS  Google Scholar 

  18. S. Zhang, O.Y. Kontsevoi, A.J. Freeman, G.B. Olson, First principles investigation of zinc-induced embrittlement in an aluminum grain boundary. Acta Mater. 59(15), 6155–6167 (2011). https://doi.org/10.1016/j.actamat.2011.06.028

    Article  CAS  Google Scholar 

  19. J. Sun, L. Zhang, G. Wu, X. Zhang, M. Rong, C. Wang, Microstructural characteristics and mechanical properties of extruded Al-4Cu-1Li-0.4Mg-0.1Zr-xZn alloy. Mater. Sci. Eng. A 743, 223–232 (2019). https://doi.org/10.1016/j.msea.2018.11.050

    Article  CAS  Google Scholar 

  20. Y. Wang, R. Wu, N. Turakhodjaev, M. Liu, Microstructural evolution, precipitation behavior and mechanical properties of a novel Al–Zn–Mg–Cu–Li–Sc–Zr alloy. J. Mater. Res. (2021). https://doi.org/10.1557/s43578-020-00005-4

    Article  Google Scholar 

  21. L. Chen, Y. Li, J. Tang, G. Zhao, C. Zhang, Investigation on microstructure and mechanical properties of Al–5.50Zn–2.35Mg–1.36Cu alloy fabricated by hot extrusion process. J. Mater. Res. 34(18), 3151–3162 (2019). https://doi.org/10.1557/jmr.2019.268

    Article  CAS  Google Scholar 

  22. Z.W. Huang, M.H. Loretto, J. White, Influence of lithium additions on precipitation and age hardening of 7075 alloy. Mater. Sci. Technol. 9(11), 967–980 (1993). https://doi.org/10.1179/mst.1993.9.11.967

    Article  CAS  Google Scholar 

  23. J. Sun, Y. Ma, C. Gao, H. Luo, Comprehensive tensile properties improved by deep cryogenic treatment prior to aging in friction-stir-welded 2198 Al–Li alloy. Rare Met. (2019). https://doi.org/10.1007/s12598-019-01214-5

    Article  Google Scholar 

  24. S. Wang, C. Zhang, X. Li, J. Wang, Uncovering the influence of Cu on the thickening and strength of the δ′/θ′/δ′ nano-composite precipitate in Al–Cu–Li alloys. J. Mater. Sci. (2021). https://doi.org/10.1007/s10853-021-05894-2

    Article  Google Scholar 

  25. F. Wang, N. Wang, F. Yu, X. Wang, J. Cui, Study on micro-structure, solid solubility and tensile properties of 5A90 Al–Li alloy cast by low-frequency electromagnetic casting processing. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153318

    Article  Google Scholar 

  26. H. Sidhar, N.Y. Martinez, R.S. Mishra, J. Silvanus, Friction stir welding of Al–Mg–Li 1424 alloy. Mater. Des. 106, 146–152 (2016). https://doi.org/10.1016/j.matdes.2016.05.111

    Article  CAS  Google Scholar 

  27. K.H. Lee, Y.J. Lee, K. Hiraga, Precipitation behavior in the early stage of aging in an Al–Li°Cu–Mg–Zr–Ag (Weldalite 049) alloy. J. Mater. Res. 14(2), 384–389 (1999). https://doi.org/10.1557/JMR.1999.0056

    Article  CAS  Google Scholar 

  28. L. Mao, H. Jin, F. Ye, F. Wang, G. Zheng, S. Wu, Effect of thermal cycles on the laser beam welded joint of AA2060 alloys. J. Mater. Res. 33(20), 3439–3448 (2018). https://doi.org/10.1557/jmr.2018.229

    Article  CAS  Google Scholar 

  29. J.W. Martin, Aluminum-lithium alloys. Annu. Rev. Mater. Sci. 18(1), 101–119 (1988). https://doi.org/10.1146/annurev.ms.18.080188.000533

    Article  CAS  Google Scholar 

  30. C. Shi, G. Wu, L. Zhang, X. Zhang, Al–5.5Mg–1.5Li–0.5Zn–0.07Sc–0.07Zr alloy produced by gravity casting and heat treatment processing. Mater. Manuf. Processes 33(8), 891–897 (2017). https://doi.org/10.1080/10426914.2017.1401725

    Article  CAS  Google Scholar 

  31. R.K. Gupta, N. Nayan, G. Nagasireesha, S.C. Sharma, Development and characterization of Al–Li alloys. Mater. Sci. Eng. A 420(1–2), 228–234 (2006). https://doi.org/10.1016/j.msea.2006.01.045

    Article  CAS  Google Scholar 

  32. I.N. Fridlyander, V.S. Sandler, Alloy 1420 of the system Al-Mg-Li. Met. Sci. Heat Treat. 30(8), 594–602 (1988). https://doi.org/10.1007/BF00778264

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 51871148 and 51821001) and the United Fund of National Department of Education and Equipment Development (No. 6141A02033245). The authors are also grateful for the funding support by the National Key R&D Program of China (No. 2016YFB0301003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohua Wu or Liang Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Wu, G., Zhang, L. et al. Variation in the microstructure and mechanical properties of permanent mold cast Al–3Li–2Mg–0.1Zr alloy with Zn addition. Journal of Materials Research 36, 2071–2082 (2021). https://doi.org/10.1557/s43578-021-00236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00236-z

Keywords

Navigation