Skip to main content
Log in

Effect of phase interface atomic coherency on dynamics of dislocations

  • Article
  • Focus Issue: Multiscale Materials Modeling of Interface-mediated Thermomechanical Behavior
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Coarse-grained atomistic simulations are conducted to study the effect of phase interface atomic coherency on the dynamics of dislocations in both metallic and non-metallic multilayers under compression. Results show that the Cu/Ni bimaterial with a coherent interface has a yield point of almost twice higher than the one with a semi-coherent interface. An increased number of semi-coherent interfaces provides richer sources for dislocation nucleation, giving rise to a lower yield point. The intersection of the deposited dislocations is shown as an effective facilitator of dislocation transmission and emission across the semi-coherent interfaces. In contrast to Cu/Ni, the Si/Ge bimaterial with coherent and semi-coherent interfaces exhibit yield strengths of only a 13% discrepancy. The dramatic difference is shown to be determined by the disparate deformation mechanisms of the interface dislocations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

Simulation data will be made available on reasonable request.

References

  1. I. Salehinia, J. Wang, D.F. Bahr, H.M. Zbib, Molecular dynamics simulations of plastic deformation in Nb/NbC multilayers. Int. J. Plast 59, 119–132 (2014)

    Article  CAS  Google Scholar 

  2. N. Li, J. Wang, J.Y. Huang, A. Misra, X. Zhang, In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scripta Mater. 63(4), 363–366 (2010)

    Article  CAS  Google Scholar 

  3. S.J. Zheng, J. Wang, J.S. Carpenter, W.M. Mook, P.O. Dickerson, N.A. Mara, I.J. Beyerlein, Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 79, 282–291 (2014)

    Article  CAS  Google Scholar 

  4. D.R.P. Singh, N. Chawla, G. Tang, Y.L. Shen, Micropillar compression of Al/SiC nanolaminates. Acta Mater. 58(20), 6628–6636 (2010)

    Article  CAS  Google Scholar 

  5. D. Bhattacharyya, N.A. Mara, P. Dickerson, R.G. Hoagland, A. Misra, Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater. 59(10), 3804–3816 (2011)

    Article  CAS  Google Scholar 

  6. X. Zhang, B. Zhang, Y. Mu, S. Shao, C.D. Wick, B.R. Ramachandran, W.J. Meng, Mechanical failure of metal/ceramic interfacial regions under shear loading. Acta Mater. 138, 224–236 (2017)

    Article  CAS  Google Scholar 

  7. J.W. Yan, X.F. Zhu, B. Yang, G.P. Zhang, Shear stress-driven refreshing capability of plastic deformation in nanolayered metals. Phys. Rev. Lett. 110(15), 155502 (2013)

    Article  CAS  Google Scholar 

  8. Y. Cui, N. Li, A. Misra, An overview of interface-dominated deformation mechanisms in metallic nanocomposites elucidated using in situ straining in a TEM. J. Mater. Res. 34(9), 1469–1478 (2019)

    Article  CAS  Google Scholar 

  9. S. Shao, J. Wang, A. Misra, R.G. Hoagland, Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces. Sci. Rep. 3(1), 2448 (2013)

    Article  Google Scholar 

  10. J. Wang, R.F. Zhang, C.Z. Zhou, I.J. Beyerlein, A. Misra, Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int. J. Plast 53, 40–55 (2014)

    Article  CAS  Google Scholar 

  11. J. Wang, C. Zhou, I.J. Beyerlein, S. Shao, Modeling interface-dominated mechanical behavior of nanolayered crystalline composites. JOM 66(1), 102–113 (2014)

    Article  Google Scholar 

  12. S. Shao, S.N. Medyanik, Dislocation–interface interaction in nanoscale fcc metallic bilayers. Mech. Res. Commun. 37(3), 315–319 (2010)

    Article  Google Scholar 

  13. S. Shao, H.M. Zbib, I.N. Mastorakos, D.F. Bahr, Deformation mechanisms, size effects, and strain hardening in nanoscale metallic multilayers under nanoindentation. J. Appl. Phys. 112(4), 044307 (2012)

    Article  CAS  Google Scholar 

  14. N. Abdolrahim, H.M. Zbib, D.F. Bahr, Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast 52, 33–50 (2014)

    Article  CAS  Google Scholar 

  15. Y. Zhu, Z. Li, M. Huang, Atomistic modeling of the interaction between matrix dislocation and interfacial misfit dislocation networks in Ni-based single crystal superalloy. Comput. Mater. Sci. 70, 178–186 (2013)

    Article  CAS  Google Scholar 

  16. J.P. Hirth, R.C. Pond, R.G. Hoagland, X.Y. Liu, J. Wang, Interface defects, reference spaces and the Frank-Bilby equation. Prog. Mater Sci. 58(5), 749–823 (2013)

    Article  Google Scholar 

  17. J. Wang, A. Misra, An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15(1), 20–28 (2011)

    Article  CAS  Google Scholar 

  18. J.S. Koehler, Attempt to design a strong solid. Phys. Rev. B 2(2), 547–551 (1970)

    Article  Google Scholar 

  19. E.S. Pacheco, T. Mura, Interaction between a screw dislocation and a bimetallic interface. J. Mech. Phys. Solids 17(3), 163–170 (1969)

    Article  Google Scholar 

  20. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010)

    Article  CAS  Google Scholar 

  21. J.R. Mayeur, I.J. Beyerlein, C.A. Bronkhorst, H.M. Mourad, Incorporating interface affected zones into crystal plasticity. Int. J. Plast 65, 206–225 (2015)

    Article  CAS  Google Scholar 

  22. N.M. Ghoniem, S.H. Tong, L.Z. Sun, Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys. Rev. B 61(2), 913–927 (2000)

    Article  CAS  Google Scholar 

  23. L. Cao, A. Hunter, I.J. Beyerlein, M. Koslowski, The role of partial mediated slip during quasi-static deformation of 3D nanocrystalline metals. J. Mech. Phys. Solids 78, 415–426 (2015)

    Article  CAS  Google Scholar 

  24. A. Hunter, B. Leu, I.J. Beyerlein, A review of slip transfer: applications of mesoscale techniques. J Mater Sci 53(8), 5584–5603 (2018)

    Article  CAS  Google Scholar 

  25. L. Cao, A. Sengupta, D. Pantuso, M. Koslowski, Effect of texture and grain size on the residual stress of nanocrystalline thin films. Modell. Simul. Mater. Sci. Eng. 25(7), 075004 (2017)

    Article  Google Scholar 

  26. Y. Zeng, A. Hunter, I.J. Beyerlein, M. Koslowski, A phase field dislocation dynamics model for a bicrystal interface system: an investigation into dislocation slip transmission across cube-on-cube interfaces. Int. J. Plast 79, 293–313 (2016)

    Article  Google Scholar 

  27. H. Wang, P.D. Wu, J. Wang, C.N. Tomé, A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int. J. Plast 49, 36–52 (2013)

    Article  CAS  Google Scholar 

  28. C.A. Bronkhorst, S.R. Kalidindi, L. Anand, Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Philosoph Trans R Soc Lond Ser A 341(1662), 443–477 (1992)

    Article  CAS  Google Scholar 

  29. M.R. Tonks, J.F. Bingert, C.A. Bronkhorst, E.N. Harstad, D.A. Tortorelli, Two stochastic mean-field polycrystal plasticity methods. J. Mech. Phys. Solids 57(8), 1230–1253 (2009)

    Article  Google Scholar 

  30. H. Wang, P.D. Wu, C.N. Tomé, J. Wang, A constitutive model of twinning and detwinning for hexagonal close packed polycrystals. Mater. Sci. Eng. A 555, 93–98 (2012)

    Article  CAS  Google Scholar 

  31. H. Wang, P.D. Wu, J. Wang, Modeling inelastic behavior of magnesium alloys during cyclic loading–unloading. Int. J. Plast 47, 49–64 (2013)

    Article  CAS  Google Scholar 

  32. S. Shao, A. Misra, H. Huang, J. Wang, Micro-scale modeling of interface-dominated mechanical behavior. J Mater Sci 53(8), 5546–5561 (2018)

    Article  CAS  Google Scholar 

  33. Tecplot Home – CFD visualization & analysis post-processing software https://www.tecplot.com/.

  34. D. Faken, H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2(2), 279–286 (1994)

    Article  CAS  Google Scholar 

  35. H. Tsuzuki, P.S. Branicio, J.P. Rino, Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput. Phys. Commun. 177(6), 518–523 (2007)

    Article  CAS  Google Scholar 

  36. R. Hoagland, T. Mitchell, J. Hirth, H. Kung, On the strengthening effects of interfaces in multilayer fee metallic composites. Philos. Mag. A 82(4), 643–664 (2002)

    CAS  Google Scholar 

  37. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    Article  Google Scholar 

  38. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)

    Article  Google Scholar 

  39. Z. Chen, L. Shen, Y. Gan, H.E. Fang, Hypersurface for the combined loading rate and specimen size effects on material properties. Int. J. Multiscale Comput. Eng. 3(4), 451–461 (2005)

    Article  Google Scholar 

  40. Z. Zhao, J. Liu, A.K. Soh, On the Da Vinci size effect in tensile strengths of nanowires: a molecular dynamics study. AIP Adv. 8(1), 015315 (2018)

    Article  CAS  Google Scholar 

  41. S. Xu, Y. Li, Y. Chen, Si/Ge (111) Semicoherent interfaces: responses to an in-plane shear and interactions with lattice dislocations. Phys. Status Solidi (B) 257(12), 2000274 (2020)

    Article  CAS  Google Scholar 

  42. Y. Chen, Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130(13), 134706 (2009)

    Article  CAS  Google Scholar 

  43. B. Onat, S. Durukanoğlu, An optimized interatomic potential for Cu–Ni alloys with the embedded-atom method. J. Phys. Condens. Matter 26(3), 035404 (2013)

    Article  CAS  Google Scholar 

  44. F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31(8), 5262 (1985)

    Article  CAS  Google Scholar 

  45. X. Chen, W. Li, L. Xiong, Y. Li, S. Yang, Z. Zheng, D.L. McDowell, Y. Chen, Ballistic-diffusive phonon heat transport across grain boundaries. Acta Mater. 136, 355–365 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges partial project support from the NSF EPSCoR-Louisiana Materials Design Alliance (LAMDA) program (Grant Number #OIA-1946231), and the seed Grants provided by the Louisiana State Board of Regents under contract numbers NSF(2019)-CIMMSeed-29, NSF(2020)-CIMMSeed-35 and NSF(2020)-CIMMSeed-36. The use of the high-performance computing resources provided by the Louisiana Optical Network Infrastructure (LONI) is gratefully acknowledged. The author also thanks Dr. Liming Xiong for sharing the new version of the CAC package developed at the Iowa State University, and Thanh Phan for helpful discussion on the code development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X. Effect of phase interface atomic coherency on dynamics of dislocations. Journal of Materials Research 36, 2792–2801 (2021). https://doi.org/10.1557/s43578-021-00215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00215-4

Keywords

Navigation