Skip to main content

Advertisement

Log in

Revisiting principles, practices and scope of technologically relevant 2D materials

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Soon after realizing superbly important properties of few layer graphene and its derivatives, other layered materials have also received a great deal of interest in recent times, owing to their finite band gaps and layer-dependent optoelectronic responses. In this review, we discuss a variety of two-dimensional (2D) materials, highlighting fabrication routes already in practice and their technological relevance in a particular field, including photocatalysis, hydrogen evolution, sensing, actuation, and biomedical applications. Basically, layered materials processed via two widely accepted bottom-up and top-down approaches have been revisited. Because of large surface area, active reactive sites, tunable band gap etc., 2D systems are believed to deliberate their key performance in smart devices, from excellent electrodes to energy efficient candidates and from color switchable elements to high-precision biosensors. Given the importance of quality, reliability, and product cost realized in any commercial product, there exists ample scope to expand this frontier field of research for the benefit of society at large.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. W.K. Smith, T.C. Vogelmann, E.H. DeLucia, D.T. Bell, K.A. Shepherd, Leaf form and photosynthesis. Bioscience 47(11), 785–793 (1997)

    Article  Google Scholar 

  2. P.C. Withers, An aerodynamic analysis of bird wings as fixed aerofoils. J. Expt. Biology 90(1), 143–162 (1981)

    Article  Google Scholar 

  3. Q. An, T. Huang, F. Shi, Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications. Chem. Soc. Rev. 47(13), 5061–5098 (2018)

    Article  CAS  Google Scholar 

  4. P. Trucano, R. Chen, Structure of graphite by neutron diffraction. Nature 258(5531), 136–137 (1975)

    Article  CAS  Google Scholar 

  5. D. Chakravarty, D.J. Late, Exfoliation of bulk inorganic layered materials into nanosheets by the rapid quenching method and their electrochemical performance. European J. Inorgan. Chem. 11, 1973–1980 (2015)

    Article  CAS  Google Scholar 

  6. G. Leftheriotis, S. Papaefthimiou, P. Yianoulis, A. Siokou, D. Kefalas, Structural and electrochemical properties of opaque sol–gel deposited WO3 layers. Appl. Surf. Sc. 218(1–4), 276–281 (2003)

    Article  CAS  Google Scholar 

  7. M.R. Tubbs, MoO3 layers—optical properties, colour centres, and holographic recording. Phys. Stat. Sol. A 21(1), 253–260 (1974)

    Article  CAS  Google Scholar 

  8. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9(5), 430–435 (2010)

    Article  CAS  Google Scholar 

  9. C. Virojanadara, M. Syväjarvi, R. Yakimova, L.I. Johansson, A.A. Zakharov, T. Balasubramanian, Homogeneous large-area graphene layer growth on 6 H-SiC (0001). Phys. Rev. B 78(24), 245403 (2008)

    Article  CAS  Google Scholar 

  10. J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 114(30), 13118–13125 (2010)

    Article  CAS  Google Scholar 

  11. Y. Feng, H. Zhang, Y. Guan, Y. Mu, Y. Wang, Novel three-dimensional flower-like porous Al2O3 nanosheets anchoring NiS2 nanoparticles for high-efficiency hydrogen evolution. J. Power Sources 348, 246–254 (2017)

    Article  CAS  Google Scholar 

  12. D. Pan, D.X. Fan, N. Kang, J.H. Zhi, X.Z. Yu, H.Q. Xu, J.H. Zhao, Free-standing two-dimensional single-crystalline InSb nanosheets. Nano Lett. 16(2), 834–841 (2016)

    Article  CAS  Google Scholar 

  13. J.Q. Hu, Y. Bando, J.H. Zhan, Y.B. Li, T. Sekiguchi, Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets. Appl. Phys. Lett. 83(21), 4414–4416 (2003)

    Article  CAS  Google Scholar 

  14. J. Golden, M. McMillan, R.T. Downs, G. Hystad, I. Goldstein, H.J. Stein, A. Zimmerman, D.A. Sverjensky, J.T. Armstrong, R.M. Hazen, Rhenium variations in molybdenite (MoS2): Evidence for progressive subsurface oxidation. Earth and Planet. Sc. Lett. 366, 1–5 (2013)

    Article  CAS  Google Scholar 

  15. A.V. Kolobov, J. Tominaga, Two-Dimensional Transition Metal Dichalcogenides, Springer Series in Material Science, 239, (2016), ISBN: 978–3–319–31449–5

  16. A. Sengupta, C.K. Sarkar, Introduction to Nano, Springer, (2015) ISBN: 978–3–662–47314–6

  17. R.P. Feynman, There’s plenty of room at the bottom. Caltech Eng. Sci. 23(5), 22–36 (1960)

    Google Scholar 

  18. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017)

    Article  CAS  Google Scholar 

  19. X. Li, J. Shen, C. Wu, K. Wu, Ball-Mill-Exfoliated Graphene: Tunable Electrochemistry and Phenol Sensing. Small 15, 1805567 (2019)

    Article  CAS  Google Scholar 

  20. K. Cho, J. Yang, Y. Lu, Phosphorene: An emerging 2D material. J. Mater. Res. 32(15), 2839–2847 (2017)

    Article  CAS  Google Scholar 

  21. X. Zhang, L. Hou, A. Ciesielski, P. Samorì, 2D materials beyond graphene for high‐performance energy storage applications. Adv. Ener. Mater. 6(23), 1600671 (2016)

  22. J. Liu, C. Guo, A. Vasileff, S. Qiao, Nanostructured 2D materials: prospective catalysts for electrochemical CO2 reduction. Small Methods, 1, 1600006 (2017)

  23. C. Huo, Z. Yan, X. Song, H. Zeng, 2D materials via liquid exfoliation: a review on fabrication and applications. Science Bulletin 60(23), 1994 (2015)

    Article  CAS  Google Scholar 

  24. S.M. Li, L.X. Zhang, M.Y. Zhu, G.J. Ji, L.X. Zhao, J. Yin, L.J. Bie, Acetone sensing of ZnO nanosheets synthesized using room-temperature precipitation. Sens. Actuators, B Chem. 249, 611–623 (2017)

    Article  CAS  Google Scholar 

  25. D.D.L. Chung, Review graphite. J. Mater. Sci. 37, 1475–1489 (2002)

    Article  CAS  Google Scholar 

  26. R.W. Henson, W.N. Reynolds, Lattice parameter changes in irradiated graphite. Carbon 3(3), 277–287 (1965)

    Article  CAS  Google Scholar 

  27. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

  28. M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D.K. Maude, A.L. Barra, M. Sprinkle, C. Berger, W.A. de Heer, M. Potemski, Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101(26), 267601 (2008)

    Article  CAS  Google Scholar 

  29. Y. Barlas, R. Côté, K. Nomura, A.H. MacDonald, Intra-Landau-level cyclotron resonance in bilayer graphene. Phys. Rev. Lett. 101(9), 097601 (2008)

    Article  CAS  Google Scholar 

  30. W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of Graphene and Its Applications: A Review. Critical Rev. Sol. St. Mat. Sc. 35, 52–71 (2010)

    CAS  Google Scholar 

  31. R. Geick, C.H. Perry, G. Rupprecht, Normal modes in hexagonal boron nitride. Phys. Rev. 146(2), 543 (1966)

    Article  CAS  Google Scholar 

  32. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proceed. Nat. Acad. Sc. 102(30), 10451–10453 (2005)

    Article  CAS  Google Scholar 

  33. A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015)

    Article  CAS  Google Scholar 

  34. M.J. Borah, H.J. Sarmah, N. Bhuyan, D. Mohanta, D. Deka, Application of Box-Behnken design in optimization of biodiesel yield using WO3/graphene quantum dot (GQD) system and its kinetics analysis. Biomass Conv. Bioref. 1–12 (2020). https://doi.org/10.1007/s13399-020-00717-x

  35. S. Das, J.A. Robinson, M. Dubey, H. Terrones, M. Terrones, Beyond graphene: progress in novel two-dimensional materials and Van der Waals solids. Ann. Rev. Mater. Res. 45, 1–27 (2015)

    Article  CAS  Google Scholar 

  36. H.J. Sarmah, D. Mohanta, A. Saha, Perceptible exciton-to-trion conversion and signature of defect mediated vibronic modes and spin relaxation in nanoscale WS2 exposed to γ-rays. Nanotechnology 31, 285706 (2020)

    Article  CAS  Google Scholar 

  37. S. Zhu, L. Gong, J. Xie, Z. Gu, Y. Zhao, Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications. Small Methods 1(12), 1700220 (2017)

  38. H.C. Diaz, Y. Ma, R. Chaghi, M. Batzill, High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2. J. Appl. Phys. 108, 191606 (2016)

  39. M. Okada,T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino,H. Shinohara, R.Kitaura, Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano, 8(8), 8273–8277 (2014)

  40. Y. Shang, J. Xia, Z. Xu, W. Chen, Hydrothermal synthesis and characterization of quasi 1D tungsten disulfide nanocrystal. J. Disp. Sci. Technol. 26(5), 635–639 (2005)

    Article  CAS  Google Scholar 

  41. X. Cai, Y. Luo, B. Liu, H.M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47(16), 6224–6266 (2018)

    Article  CAS  Google Scholar 

  42. K. Wang, G. Tai, K.H. Wong, S.P. Lau, W. Guo, Ni induced few layered graphene growth at low temperature by pulse laser deposition. AIP Advances, 1(2), 022141 (2011)

  43. X. Ren, Q. Wei, P. Ren, Y. Wang, Y. Peng, Hydrothermal-solvothermal cutting integrated synthesis and optical properties of MoS2 quantum dots. Opt. Mater. 86, 62–65 (2018)

    Article  CAS  Google Scholar 

  44. Z. Yang, J. Hao, Progress in pulsed laser deposited two-dimensional layered materials for device applications. J. Mat. Chem. C 4, 8859–8878 (2016)

    Article  CAS  Google Scholar 

  45. E. Cappelli, C. Scilletta, S. Orlando, R. Flammini, S. Lacobucci, P. Ascarelli, Surface characterization of nano-structured carbon films deposited by Nd:YAG pulse laser depostion. Thin Solid Films 482(1), 305–310 (2005)

    Article  CAS  Google Scholar 

  46. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017)

    Article  CAS  Google Scholar 

  47. S.L. Wong, H. Liu, D. Chi, Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides. Prog. Cryst. Growth Charact. Mat. 62, 9–28 (2016)

    Article  CAS  Google Scholar 

  48. R. Munoz, C.G. Aleixandre, Review of CVD synthesis of graphene. Chem. Vapor. Depos. 19, 297–322 (2013)

    Article  CAS  Google Scholar 

  49. Y. Fan, K. Nakanishi, V. P. Veigang-Radulescu, R. Mizuta, J. C. Stewart, J.E.N. Swallow, A.E. Dearle, O.J. Burton, J.A. Alexander-Webber, P. Ferrer, G. Held, B. Brennan, A.J. Pollard, R.S. Weatherup, S. Hofmann, Understanding metal organic chemical vapour deposition of monolayer WS2: the enhancing role of Au substrate for simple organosulfur precursors. Nanoscale 12, 22234–22244 (2020)

  50. A. Koma, K. Yoshimura, Ultrasharp interfaces grown with Van der Waals epitaxy. Surf. Sci. 174, 556–560 (1986)

    Article  CAS  Google Scholar 

  51. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus Jr., Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2(6), 949–956 (2012)

    Article  CAS  Google Scholar 

  52. M. Lee, S.K. Balasingam, H.Y. Jeong, W.G. Hong, H.B.R. Lee, B.H. Kim, Y. Jun, One step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci. Rep. 5, 8151 (2015)

  53. J. Shi, G. Chen, G. Zeng, A. Chen, K. He, Z. Huang, L. Hu, J. Zeng, J. Wu, W. Liu, Hydrothermal synthesis of graphene wrapped Fe-doped TiO2 nanospheres with high photocatalysis performance. Ceramics Intern. 44(7), 7473–7480 (2018)

    Article  CAS  Google Scholar 

  54. W.J. Li, E.W. Shi, J.M. Ko, Z.Z. Chen, H. Ogino, T. Fukuda, Hydrothermal synthesis of MoS2 nanowires, J. Cryst. Growth, 250(3), 418–422 (2003)

  55. M. Velpandian, S. Pulipaka, A. Tikoo, P. Meduri, Improved charge carrier dynamics of WS2 nanostructures by the way of CdS@WS2 heterostructures for use in water spitting and water purification. Sustain. Energy Fuels 4, 4096–4107 (2020)

    Article  CAS  Google Scholar 

  56. S.J. Hazarika, D. Mohanta, Exfoliated WS2 nanosheets: optical, photocatalytic and nitrogen adsorption/desorption characteristics. Bull. Mat. Sci. 41(6), 163 (2018)

    Article  CAS  Google Scholar 

  57. S.J. Hazarika, D. Mohanta, Inorganic fullerene type WS2 nanoparticles: processing, characterization and its photocatalytic performance on malachite green. App. Phys. A 123, 381 (2017)

    Article  CAS  Google Scholar 

  58. M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A. 3(22), 11700–11715 (2015)

    Article  CAS  Google Scholar 

  59. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331, 568 (2011)

  60. J. Liu, C.K. Poh, D., Zhan, L. Lai, S.H. Lim, L. Wang, X. Liu, N.G. Sahoo, C. Li, Z. Shen, J. Lin, Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy, 2, 377–386 (2013)

  61. P. Dhar, S. Bhattacharya, S. Nayar, S.K. Das, Anomalously augmented charge transport capabilities of biomimetically transformed collagen, intercalated nanographene-based biocolloids. Langmuir 31, 3696–3706 (2015)

    Article  CAS  Google Scholar 

  62. B. Zhu, X. Chen, X. Cui, Exciton binding energy of monolayer WS2. Sci. Rep. 5, 9218 (2015)

  63. X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013)

    Article  CAS  Google Scholar 

  64. K. Kalantar-zadeh, A. Vijayaraghavan, M.H. Ham, H. Zheng, M. Breedon, M.S. Strano, Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem. Mater. 22(19), 5660–5666 (2010)

    Article  CAS  Google Scholar 

  65. C. Backes et al, Production and processing of graphene andrelated materials. 2D Mater. 7, 022001 (2020)

  66. S. Tashiro, H. Igarashi, Effects of ball size and particle size on the rate of wet ball milling. J. Ceram. Soc. Jap. 98(1142), 1082–1087 (1990)

    Article  Google Scholar 

  67. D. Shi, M. Yang, B. Chang, Z. Ai, K. Zhang, Y. Shao, S. Wang, Y. Wu, X. Hao, Ultrasonic-Ball Milling: A Novel Strategy to Prepare Large-Size Ultrathin 2D Materials. Small 16(13), 1906734 (2020)

    Article  CAS  Google Scholar 

  68. K.G. Zhou, N.N. Mao, H.X. Wang, Y.Peng, H.L.Zhang, A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50(46), 10839–10842 (2011)

  69. N. Liu, P. Kim, J.H. Kim, J.H. Ye, S. Kim, C.J. Lee, Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano, 8, 6902–6910 (2014)

  70. A.A. Jeffery, C. Nethravathi, M. Rajamathi, Two-dimensional nanosheets and layered hybrids of MoS2 and WSthrough exfoliation of ammoniated MS2 (M=Mo,W). J. Phys. Chem. C, 118, 1386–1396 (2014)

  71. N. Paul, D. Mohanta, A. Saha, Optical and rheological study of gamma irradiated rare-earth nanoparticle based ferrofluids. Nucl. Instr. Meth. B, 292, 45–49 (2012)

  72. O.V.Yazyev, L. Helm, Defect-induced magnetism in graphene. Phys. Rev. B, 75(12), 125408 (2007)

  73. A.R. Khan, T. Lu, W. Ma, Y. Lu, Y. Liu, Tunable Optoelectronic Properties of WS2 by Local Strain Engineering and Folding. Adv. Electr. Mater. 6(4), 1901381 (2020)

    Article  CAS  Google Scholar 

  74. H.J. Sarmah, D. Mohanta, Emergence of Raman active D-band and unusually suppressed conductivity mediated by nanoscale defects in pencil-lead graphitic systems under 80 keV Xe+ ion irradiation. Nucl. Instr. Meth. B, 463, 1–6 (2020)

  75. H.J. Sarmah, D. Mohanta, Highly symmetric and delayed excitonic emission response and space charge-limited current transport in β-irradiated WSe2 and WS2 nanoflakes, J. Mat. Res. (2021). https://doi.org/10.1557/s43578-020-00025-0

  76. K. Ding, Y. Feng, S. Huang, B. Li, Y. Wang, H. Liu, G. Qian, The effect of electron beam irradiation on WS2 nanotubes. Nanotechnology 23, 415703 (2012)

    Article  CAS  Google Scholar 

  77. T. Gladkikh, A. Kozlovskiy, I. Kenzhina, K. Dukenbayev, M. Zdorovets, Changes in optical and structural properties of AlN after irradiation with C2+ ions of 40 keV. Vacuum 161, 103 (2019)

    Article  CAS  Google Scholar 

  78. Y.N. Rao, D. Banerjee, A. Datta, S.K. Das, R. Guin, A. Saha, Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles. Rad. Phys. and Chem. 79, 1240–1246 (2010)

    Article  CAS  Google Scholar 

  79. K.S. Khorkov, D.A. Kochuev, V.A. Llin, R.V. Chkalov, V.G. Prokoshev, S.M. Arakelian, Mechanisms of graphene exfoliation under the action of femtosecond laser radiation in liquid nitrogen. J. Phys. Conf. Series 951(1), 012014 (2018)

    Article  CAS  Google Scholar 

  80. S.J. An, Y.H. Kim, C. Lee, D.Y. Park, M.S. Jeong, Exfoliation of transition metal dichalcogenides by a high-power femtosecond laser. Sci. Rep. 8, 12957 (2018)

    Article  CAS  Google Scholar 

  81. M. Qian, Y.S. Zhou, Y. Gao, J.B. Park, T. Feng, S.M. Huang, Z. Sun, L.Jiangand Y.F. Lu, Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite, Appl. Phys. Lett. 98, 173108 (2011).

  82. T. Liu, Y. Chao, M. Gao, C. Liang, Q. Chen, G. Song, L. Cheng, Z. Liu, Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Res. 9(10), 3003–3017 (2016)

    Article  CAS  Google Scholar 

  83. M.C. Demirel, M. Vural, M. Terrones, Composites of Proteins and 2D Nanomaterials. Adv. Funct. Mater. 28(27), 1704990 (2018)

    Article  CAS  Google Scholar 

  84. J.I. Paredes, S. Villar-Rodil, Biomolecule-assisted exfoliation and dispersion of graphene and other two dimensional materials: a review of recent progress and applications. Nanoscale 8(34), 15389–15413 (2016)

    Article  CAS  Google Scholar 

  85. H.J. Sarmah, D. Mohanta, Impetuous exfoliation of tungsten disulfide into a few-layer nanoscale form due to super active collagenase biomolecules. Mat. Chem. Phys. 250, 123008 (2020)

    Article  CAS  Google Scholar 

  86. T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, Photoelectrochemical hydrogen generation from water using solar energy-Materials related aspects. Int. J. Hydrogen Energy 27(10), 991–1022 (2002)

    Article  CAS  Google Scholar 

  87. A. Guha, T.V. Vineesh, A. Sekar, S. Narayannaru, M. Sahoo, S. Nayak, S. Chakraborty, T.N. Narayanan, Mechanistic insight into enhanced hydrogen evolution reaction activity of ultrathin hexagonal boron nitride-modified Pt electrodes. ACS Catalyst 8(7), 6636–6644 (2018)

    Article  CAS  Google Scholar 

  88. D.N. Sredojevic, M.R. Belic, Z. Sljivancanin, Hydrogen evolution reaction over single atom catalysts based on metal adatoms at defected graphene and h-BN. J. Phys. Chem. C 124(31), 16860–16867 (2020)

    Article  CAS  Google Scholar 

  89. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009)

    Article  CAS  Google Scholar 

  90. C.K. Sumesh, S.C. Peter, Two dimensional semiconductor transition metal based heterostrucres for water splitting applications. Dalton Trans. 48(34), 12772–12802 (2009)

    Article  Google Scholar 

  91. V.U. Pandit, S.S. Arbuj, U.P. Mulik, B.B. Kale, Novel functionality of organic 6, 13-pentacenequinone as a photocatalyst for hydrogen production under solar light. Environ. Science & Technol. 48(7), 4178–4183 (2014)

    Article  CAS  Google Scholar 

  92. V. Pandit, S. Arbuj, R. Hawaldar, P. Kshirsagar, U. Mulik, S. Gosavi, C.J. Park, B. Kale, In situ preparation of a novel organo-inorganic 6,13-pentacenequinone–TiO2 coupled semiconductor nanosystem: a new visible light active photocatalyst for hydrogen generation. J. Mater. Chem. A 3(8), 4338–4344 (2015)

    Article  CAS  Google Scholar 

  93. S. Dou, J. Wu, L. Tao, A. Shen, J. Huo, S. Wang, Carbon-coated MoS2 nanosheets as highly efficient electrocatalysts for the hydrogen evolution reaction. Nanotechnology 27(4), 045402 (2015)

    Article  CAS  Google Scholar 

  94. K. Roy, M. Padmanabhan, S. Goswami, T.P. Sai, G. Ramalingam, S. Raghavan, A. Ghosh, Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotech. 8, 826–830 (2013)

    Article  CAS  Google Scholar 

  95. X. Li, J. Yu, S. Wageh, A.A. Al-Ghamdi, J. Xie, Graphene in photocatalysis: a review. Small 12(48), 6640–6696 (2016)

    Article  CAS  Google Scholar 

  96. B. Luo, G. Liu, L. Wang, Recent advances in 2D materials for photocatalysis. Nanoscale 8(13), 6904–6920 (2016)

    Article  CAS  Google Scholar 

  97. C. Lin, Y. Gao, J. Zhang, D. Xue, H. Fang, J. Tian, C. Zhou, C. Zhang, Y. Li, H. Li, GO/TiO2 Composites as a highly active photocatalyst for the degradation of methyl orange. J. Mater. Res. 35(10), 1307–1315 (2020)

    Article  CAS  Google Scholar 

  98. S.J. Hazarika, D. Mohanta, Excitation dependent light emission and enhanced photocatalytic response of WS2/C-dot hybrid nanoscale systems. J. Luminesc. 206, 530–539 (2019)

    Article  CAS  Google Scholar 

  99. L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, D. Fan, Sensitivity enhancement by using few layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensors. Sensors and Actuators B 249, 542–548 (2017)

  100. J.H. Jung, D.S. Cheon, F. Liu, K.B. Lee, T.S. Seo, A graphene oxide based immuno-biosensor for pathogen detection. Angew. Chem. 49(33), 5708–5711 (2010)

    Article  CAS  Google Scholar 

  101. A. Neog, S. Deb, R. Biswas, Atypical electrical behavior of few layered WS2 nanosheets based platform subject to heavy metal ion treatment. Mater. Lett. 268, 127597 (2020)

    Article  CAS  Google Scholar 

  102. K. Chu, F. Wang, Y. Tian, Z. Wei, Phosphorus doped and defects engineered graphene for improved electrochemical sensing: synergistic effect of dopants and defects. Electrochim. Acta 231, 557–564 (2017)

    Article  CAS  Google Scholar 

  103. T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Chemical Functionalization of graphene and its applications. Prog. Mater. Sci. 57(7), 1061–1105 (2012)

    Article  CAS  Google Scholar 

  104. V. Sarmiento, M.T. Oropeza-Guzmán, M. Lockett, W. Chen, S. Ahn, J. Wang, O. Vazquez-Mena, Electrochemical functionalization strategy for chemical vapor deposited graphene on silicon substrates: grafting, electronic properties and biosensing. Nanotechnol. 30, 475703 (2019)

    Article  CAS  Google Scholar 

  105. Q. He, S. Wu, Z. Yin, H. Zhang, Graphene based electronic sensors. Chem. Sci. 3(6), 1764–1772 (2012)

    Article  CAS  Google Scholar 

  106. D. Sarkar, W. Liu, X. Xie, A.C. Anselmo, S. Mitragotri, K. Banerjee, MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8(4), 3992–4003 (2014)

    Article  CAS  Google Scholar 

  107. Y.K. Ryu, F. Carrascoso, R. López-Nebreda, N. Agraït, R. Frisenda, A. Castellanos-Gomez, Micro-heater actuators as a versatile platform for strain engineering in 2D materials. Nano Lett. 20(7), 5339–5345 (2020)

    Article  CAS  Google Scholar 

  108. M. Panahi-Sarmad, B. Zahiri, M. Noroozi, Graphene based composites for dielectric elastomer actuator: a comprehensive review. Sensors and Actuators A 293, 222–241 (2019)

    Article  CAS  Google Scholar 

  109. K. Holmberg, P. Anderson and E. Ali, Global energy consumption due to friction in passenger car. Tribol. Int. 47, 221–234 (2012)

  110. T.W. Scharf, S.V. Prasad, Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013)

    Article  CAS  Google Scholar 

  111. S.M. Aouadi, B. Luster, P. Kohli, C. Muratore, A.A. Voevodin, Progress in the development of adaptive nitride-based coatings for high temperature tribological applications. Surf. Coat. Technol. 204(6–7), 962–968 (2009)

    Article  CAS  Google Scholar 

  112. L. Rapoport, N. Fleischer, R. Tenne, Fullerene-like WS2 nanoparticles: superior lubricants for harsh conditions. Adv. Mater. 15:651–655 (2003)

  113. O. Tevet, P. Von-Huth, R. Popovitz-Biro, R. Rosentsveig, D. Wagner, R. Tenne, Frictional mechanism of individualmultilayer nanoparticles. Proced. Nat. Acad. Sci. 13(108), 19901–19906 (2011)

    Article  Google Scholar 

  114. S. Kwon, J.H. Ko, K.J. Jeon, Y.H. Kim, J.Y. Park, Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12(12), 6043–6048 (2012)

    Article  CAS  Google Scholar 

  115. M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: a review. Progr. in Mat. Sci 57(5), 911–946 (2012)

    Article  CAS  Google Scholar 

  116. J. Li, G. Wang, H. Geng, H. Zhu, M. Zhang, Z. Di, X. Liu, P.K. Chu, X. Wang, CVD growth of graphene on NiTi alloy for enhanced biological activity. ACS Appl. Mater. & Interf. 7(36), 19876–19881 (2015)

    Article  CAS  Google Scholar 

  117. P. Price and K. Sikora: Treatment for cancer, 6th edition (CRC Press, 2014), ISBN: 987–1-482-21494-9

  118. W. Feng, L. Chen, M. Qin, X. Zhou, Q. Zhang, Y. Miao, K. Qiu, Y. Zhang, C. He, Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. Sci. Rep. 5(1), 17422 (2015)

    Article  CAS  Google Scholar 

  119. J.L. Markman, A. Rekechenetskiy, E. Holler, J.Y. Ljubimova, Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev. 65(13–14), 1866–1879 (2013)

    Article  CAS  Google Scholar 

  120. F. Wang, H. Duan, R. Zhang, H. Guo, H. Lin, Y. Chen, Potentiated cytosolic drug delivery and photonic hyperthermia by 2D free-standing silicene nanosheets for tumor nanomedicine. Nanoscale 12(34), 17931–17946 (2020)

    Article  Google Scholar 

  121. L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114(21), 10869–10939 (2014)

    Article  CAS  Google Scholar 

  122. S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, H. Chen, A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy. Adv. Mater. 27(17), 2775–2782 (2015)

  123. A. Bianco, Graphene: safe or toxic? The two faces of the medal. Angew. Chem. Int. Ed. 52(19), 4986–4997 (2013)

    Article  CAS  Google Scholar 

  124. W. Z. Teo, E. L. K. Chng, Z. Sofer and M. Pumera, Cytotoxicity of exfoliated transition‐metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chemistry–A European Journal, 20(31), 9627–9632 (2014)

  125. M. Wojtoniszak, X. Chen, R.J. Kalenczuk, A. Wajda, J. Lapczuk, M. Kurzewski, M. Drozdzik, P.K. Chu, E. Borowiak-Palen, Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf., B 89, 79–85 (2012)

    Article  CAS  Google Scholar 

  126. X. Yang, J. Li, T. Liang, C. Ma, Y. Zhang, H. Chen, N. Hanagata, H. Su, M. Xu, Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6(17), 10126–10133 (2014)

    Article  CAS  Google Scholar 

  127. S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9), 6971–6980 (2011)

    Article  CAS  Google Scholar 

  128. S. Zhu, L. Gong, J. Xie, Z. Gu, Y. Zhao, Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications. Small Methods 1(12), 1700220 (2017)

    Article  CAS  Google Scholar 

  129. M. Lhor, S.C. Bernier, H. Horchani, S. Bussieres, L. Cantin, B. Desbat, C. Salesse, Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv. in Colloid and Interface Sci. 207, 223–239 (2014)

    Article  CAS  Google Scholar 

  130. Y. Yong, L. Zhou, Z. Gu, L. Yan, G. Tian, X. Zheng, X. Liu, X. Zhang, J. Shi, W. Cong, W. Yin, Y. Zhao, WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells, Nanoscale 6(17), 10394–10403 (2014)

  131. S.P. Wang, L.F. Tan, P. Liang, T.L. Liu, J.Z. Wang, C.H. Fu, J. Yu, J.P. Dou, H. Li, X.W. Meng, Layered MoS2 nanoflowers for microwave thermal therapy. J. Mater. Chem. B 4(12), 2133–2141 (2016)

  132. L. Chen, W. Feng, X. Zhou, K. Qiu, Y. Miao, Q. Zhang, M. Qin, L. Li, Y. Zhang, C. He, Facile synthesis of novel albumin-functionalized flower-like MoS2 nanoparticles for in vitro chemo-photothermal synergistic therapy. RSC Adv. 6(16), 13040–13049 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Inter-University Accelerator Centre (IUAC), New Delhi for the financial support (UFR-62312/2017-20). We would like to put in record our peers and colleagues who were directly or indirectly involved in our past experimental works supported through various project schemes. We also acknowledge ACS, AIP, RSC, Elsevier BV, and Springer Nature to permit us to resuse relevant artworks presented in this review. At the end, the permission received from the JMR Editor-in-Chief to present this review is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dambarudhar Mohanta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no financial conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmah, H.J., Mohanta, D. Revisiting principles, practices and scope of technologically relevant 2D materials. Journal of Materials Research 36, 1961–1979 (2021). https://doi.org/10.1557/s43578-021-00211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00211-8

Keywords

Navigation