Skip to main content
Log in

A rapid preparation method for in situ nanomechanical TEM tensile specimens

  • Article
  • Focus Issue: Advanced Nanomechanical Testing
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Specimen preparation is a critical aspect in electron microscopy and is particularly challenging for in situ investigations that require specimens to fit onto specific testing devices. We report a modification of a substrate lift-off technique for thin films that enables users to produce specimens for in situ nanomechanical tensile testing. By depositing an electron transparent film, removing it from its substrate, and mounting it to a Cu grid (which serves for preparatory staging), rectangular specimens are focus ion beam (FIB) milled and mounted to push-to-pull or similar MEMS-like devices for nanomechanical testing. Using the FIB, the gauge length is milled into a reduced cross-section yielding the ‘dog-bone’ geometry. This use of this Cu grid-staging significantly reduces mounting and thinning steps for the direct film-to-device preparation as well as allows the testing device to be used multiple times for new specimens. Finally, we reveal ion-induced grain growth with improper milling and solute induced grain boundary embrittlement in the nanocrystalline alloy studied.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2 (
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J. Kacher, C. Kirchlechner, J. Michler, E. Polatidis, R. Schwaiger, H. Van Swygenhoven, M. Taheri, M. Legros, Impact of in situ nanomechanics on physical metallurgy. Mrs Bull. 44, 465 (2019)

    Article  Google Scholar 

  2. C. Gammer, J. Kacher, C. Czarnik, O. Warren, J. Ciston, A. Minor, Local and transient nanoscale strain mapping during in situ deformation . Appl Phys. Lett. 109, 081906 (2016)

    Article  CAS  Google Scholar 

  3. D.C. Bufford, D. Stauffer, W.M. Mook, S. SyedAsif, B.L. Boyce, K. Hattar, High cycle fatigue in the transmission electron microscope. Nano Lett. 16, 4946 (2016)

    Article  CAS  Google Scholar 

  4. A. Kobler, C. Kübel, Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM. Ultramicroscopy 173, 84 (2017)

    Article  CAS  Google Scholar 

  5. E. Izadi, A. Darbal, R. Sarkar, J. Rajagopalan, Grain rotations in ultrafine-grained aluminum films studied using in situ TEM straining with automated crystal orientation mapping. Mater Des. 113, 186 (2017)

    Article  CAS  Google Scholar 

  6. J.R. Greer, J.-Y. Kim, M.J. Burek, The in-situ mechanical testing of nanoscale single-crystalline nanopillars. JOM. 61, 19 (2009)

    Article  Google Scholar 

  7. Q. Yu, M. Legros, A.M. Minor, situ TEM nanomechanics. MRS Bull. 40, 62 (2015)

    Article  Google Scholar 

  8. A. Kobler, C. Brandl, H. Hahn, C. Kübel, In situ observation of deformation processes in nanocrystalline face-centered cubic metals. Beilstein J. Nanotech. 7, 572 (2016)

    Article  CAS  Google Scholar 

  9. A. Kobler, A. Kashiwar, H. Hahn, C. Kübel, Combination of in situ straining and ACOM TEM: A novel method for analysis of plastic deformation of nanocrystalline metals. Ultramicroscopy 128, 68 (2013)

    Article  CAS  Google Scholar 

  10. D. Kiener, C. Motz, G. Dehm, R. Pippan, Overview on established and novel FIB based miniaturized mechanical testing using in-situ SEM. Int. J. Mat. Res. 100, 1074 (2009)

    Article  CAS  Google Scholar 

  11. M. Legros, D. Gianola, C. Motz, Quantitative in situ mechanical testing in electron microscopes. MRS Bull. 35, 354 (2010)

    Article  CAS  Google Scholar 

  12. F.R. Brotzen, Mechanical testing of thin films. Int. Mat. Rev. 39, 24 (1994)

    Article  CAS  Google Scholar 

  13. J. Kacher, Q. Yu, C. Chisholm, C. Gammer and A.M. Minor: In Situ TEM Nanomechanical Testing, in MEMS and Nanotechnology, Volume 5, (Springer, City, 2016), pp. 9.

  14. S. Bhowmick, H. Espinosa, K. Jungjohann, T. Pardoen, O. Pierron, Advanced microelectromechanical systems-based nanomechanical testing: Beyond stress and strain measurements. MRS Bull. 44, 487 (2019)

    Article  Google Scholar 

  15. Q. Guo, G.B. Thompson, In-situ Indentation and Correlated Precession Electron Diffraction Analysis of a Polycrystalline Cu Thin Film. JOM. 70, 1081 (2018)

    Article  CAS  Google Scholar 

  16. Q. Guo, Y. Gu, C.M. Barr, T. Koenig, K. Hattar, L. Li, G.B. Thompson, In situ indentation and high cycle tapping deformation responses in a nanolaminate crystalline/amorphous metal composite. Mater. Sci. Eng. A 798, 140074 (2020)

    Article  CAS  Google Scholar 

  17. M.-R. He, S.K. Samudrala, G. Kim, P.J. Felfer, A.J. Breen, J.M. Cairney, D.S. Gianola, Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen. Nat Commun. 7, 11225 (2016)

    Article  CAS  Google Scholar 

  18. J. Kacher, T. Zhu, O. Pierron, D.E. Spearot, Integrating in situ TEM experiments and atomistic simulations for defect mechanics. Cur. Op. Sol. St. Mat. Sci. 23, 117 (2019)

    CAS  Google Scholar 

  19. S. Gupta, S. Stangebye, K. Jungjohann, B. Boyce, T. Zhu, J. Kacher, O.N. Pierron, In situ TEM measurement of activation volume in ultrafine grained gold. Nanoscale 12, 7146 (2020)

    Article  CAS  Google Scholar 

  20. H. Van Swygenhoven, M. Spaczer, A. Caro, D. Farkas, Competing plastic deformation mechanisms in nanophase metals. Phys. Rev. B 60, 22 (1999)

    Article  Google Scholar 

  21. H. Vehoff, D. Lemaire, K. Schüler, T. Waschkies, B. Yang, The effect of grain size on strain rate sensitivity and activation volume–from nano to UFG nickel. Int. J. Mater. Res. 98, 259 (2007)

    Article  CAS  Google Scholar 

  22. J. Stinville, E.R. Yao, P.G. Callahan, J. Shin, F. Wang, M.P. Echlin, T.M. Pollock, D.S. Gianola, Dislocation dynamics in a nickel-based superalloy via in-situ transmission scanning electron microscopy. Acta Mater. 168, 152 (2019)

    Article  CAS  Google Scholar 

  23. D. Chang and W. Sharpe Jr: Mechanical analysis and properties of MEMS materials. Microeng. Aerospace Syst. 73 (1999).

  24. D.S. Gianola, C. Eberl, Micro-and nanoscale tensile testing of materials. JOM. 61, 24 (2009)

    Article  Google Scholar 

  25. Y. Zhu, T.-H. Chang, A review of microelectromechanical systems for nanoscale mechanical characterization. J. Micromech. Microeng. 25, 093001 (2015)

    Article  CAS  Google Scholar 

  26. R.A. Bernal, R. Ramachandramoorthy, H.D. Espinosa, Double-tilt in situ TEM holder with multiple electrical contacts and its application in MEMS-based mechanical testing of nanomaterials. Ultramicroscopy 156, 23 (2015)

    Article  CAS  Google Scholar 

  27. Y. Yang, Z. Fu, X. Zhang, Y. Cui, F. Xu, T. Li, Y. Wang, Situ TEM mechanical characterization of one-dimensional nanostructures via a standard double-tilt holder compatible MEMS device. Ultramicroscopy 198, 43 (2019)

    Article  CAS  Google Scholar 

  28. H.J. Qu, K.H. Yano, P.V. Patki, M.J. Swenson, J.P. Wharry, Understanding plasticity in irradiated alloys through TEM in situ compression pillar tests. J. Mater. Res. 35, 1037 (2020)

    Article  CAS  Google Scholar 

  29. S. Bhowmick, E. Hintsala, D. Stauffer, S.A.S. Asif, In situ TEM study of friction and wear of olivine. Microsc. Microanal. 25, 1898 (2019)

    Article  Google Scholar 

  30. V. Samaeeaghmiyoni, H. Idrissi, J. Groten, R. Schwaiger, D. Schryvers, Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach. Micron 94, 66 (2017)

    Article  CAS  Google Scholar 

  31. P.H. Warren, G. Warren, M. Dubey, J. Burns, Y.Q. Wu, J.P. Wharry, Method for fabricating depth-specific TEM in situ tensile bars. JOM. 72, 2057 (2020)

    Article  CAS  Google Scholar 

  32. H. Idrissi, A. Kobler, B. Amin-Ahmadi, M. Coulombier, M. Galceran, J.-P. Raskin, S. Godet, C. Kübel, T. Pardoen, D. Schryvers, Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing. Appl. Phys. Lett. 104, 101903 (2014)

    Article  CAS  Google Scholar 

  33. S.H. Oh, M. Legros, D. Kiener, G. Dehm, Situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat. Mat. 8, 95 (2009)

    Article  CAS  Google Scholar 

  34. M. Mačković, T. Przybilla, C. Dieker, P. Herre, S. Romeis, H. Stara, N. Schrenker, W. Peukert, E. Spiecker, A novel approach for preparation and in situ tensile testing of silica glass membranes in the transmission electron microscope. Front. Mater. 4, 24–26 (2017)

    Article  Google Scholar 

  35. S. Bhowmick, D. Stauffer, H. Guo, S. Kaps, Y.K. Mishra, V. Hrkac, O. Warren, R. Adelung, A. Minor, L. Kienle, In situ electromechanical study of ZnO nanowires. Microsc. Microanal. 19, 434 (2013)

    Article  Google Scholar 

  36. S. Kaps, S. Bhowmick, J. Gröttrup, V. Hrkac, D. Stauffer, H. Guo, O. Warren, J. Adam, L. Kienle, A. Minor, R. Adelung, Y. Mishra, Piezoresistive response of quasi-one-dimensional ZnO nanowires using an in situ electromechanical device. ACS Omega 2, 2985 (2017)

    Article  CAS  Google Scholar 

  37. K. Kim, J.C. Yoon, J. Kim, J.H. Kim, S.W. Lee, A. Yoon, Z. Lee, Dedicated preparation for in situ transmission electron microscope tensile testing of exfoliated graphene. Appl. Microsc. 49, 3 (2019)

    Article  Google Scholar 

  38. C. Cao, J.Y. Howe, D. Perovic, T. Filleter, Y. Sun, In situ TEM tensile testing of carbon-linked graphene oxide nanosheets using a MEMS device. Nanotech. 27, 28 (2016)

    Article  Google Scholar 

  39. H. Idrissi, C. Bollinger, F. Boioli, D. Schryvers, P. Cordier, Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing. Sci. Adv. 2, 64 (2016)

    Article  Google Scholar 

  40. H. Idrissi, V. Samaee, G. Lumbeeck, T. van der Werf, T. Pardoen, D. Schryvers, P. Cordier, In situ quantitative tensile testing of antigorite in a transmission electron microscope. J. Geophys. Res. 125, 89 (2020)

    Article  Google Scholar 

  41. E.D. Hintsala, D.D. Stauffer, Y. Oh, S.S. Asif, In situ TEM scratch testing of perpendicular magnetic recording multilayers with a novel MEMS tribometer. JOM. 69, 51 (2017)

    Article  CAS  Google Scholar 

  42. J. Ye, R.K. Mishra, A.K. Sachdev, A.M. Minor, In situ TEM compression testing of Mg and Mg–02wt% Ce single crystals. Scr. Mater. 64, 292 (2011)

    Article  CAS  Google Scholar 

  43. J. Mayer, L.A. Giannuzzi, T. Kamino, J. Michael, TEM sample preparation and FIB-induced damage. MRS Bull. 32, 400 (2007)

    Article  CAS  Google Scholar 

  44. X. Li, A.M. Minor, Precise measurement of activation parameters for individual dislocation nucleation during in situ TEM tensile testing of single crystal nickel. Scr Mater. 197, 113764 (2021)

    Article  CAS  Google Scholar 

  45. G. Sáfrán, P. Panine, A novel method for the cross-sectional TEM preparation of thin films deposited onto water-soluble substrates. Microsc. Res. Tech. 25, 346 (1993)

    Article  Google Scholar 

  46. K. Peng, Y. Liu, I. Lin, C. Lin, S. Huang and C. Ting: The Development of Low-Temperature Atomic Layer Deposition of HfO2 for TEM Sample Preparation on Soft Photo-Resist Substrate, in 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), (City, 2018), pp. 1.

  47. H. Heidari, G. Rivero, H. Idrissi, D. Ramachandran, S. Cakir, R. Egoavil, M. Kurttepeli, A.C. Crabbé, T. Hauffman, H. Terryn, F. Du Prez, D. Schryvers, Melamine-formaldehyde microcapsules: micro- and nanostructural characterization with electron microscopy. Microsc. Microanal. 22, 1222 (2016)

    Article  CAS  Google Scholar 

  48. Y.F. Shen, W.Y. Xue, Y.D. Wang, Z.Y. Liu, L. Zuo, Mechanical properties of nanocrystalline nickel films deposited by pulse plating. Surf. Coat. Tech. 202, 5140 (2008)

    Article  CAS  Google Scholar 

  49. Y. Wang, A. Hamza, E. Ma, Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 (2006)

    Article  CAS  Google Scholar 

  50. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003)

    Article  CAS  Google Scholar 

  51. Y. Greenzweig, Y. Drezner, S. Tan, R.H. Livengood, A. Raveh, Current density profile characterization and analysis method for focused ion beam. Microelect. Eng. 155, 19 (2016)

    Article  CAS  Google Scholar 

  52. Y. Drezner, Y. Greenzweig, S. Tan, R.H. Livengood, A. Raveh, High resolution TEM analysis of focused ion beam amorphized regions in single crystal silicon: a complementary materials analysis of the teardrop method. J. Vac. Sci. Tech. B 35, 011801 (2016)

    Article  CAS  Google Scholar 

  53. D. Kiener, C. Motz, M. Rester, M. Jenko, G. Dehm, FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mat. Sci. Eng. A 459, 262 (2007)

    Article  CAS  Google Scholar 

  54. K. Thompson, B. Gorman, D. Larson, B.V. Leer, L. Hong, Minimization of Ga induced FIB damage using low energy clean-up. Microsc. Microanal. 12, 1736 (2006)

    Article  Google Scholar 

  55. S. Srinivasan, C. Kale, B.C. Hornbuckle, K.A. Darling, M.R. Chancey, E. Hernández-Rivera, Y. Chen, T.R. Koenig, Y.Q. Wang, G.B. Thompson, K.N. Solanki, Radiation tolerance and microstructural changes of nanocrystalline Cu-Ta alloy to high dose self-ion irradiation. Acta Mater. 195, 621 (2020)

    Article  CAS  Google Scholar 

  56. J. Gupta, J.M.E. Harper, J.L.M. Iv, P.G. Blauner, D.A. Smith, Focused ion beam imaging of grain growth in copper thin films. Appl. Phy. Lett. 61, 663 (1992)

    Article  CAS  Google Scholar 

  57. D. Kaoumi, A.T. Motta, R. Birtcher, Grain growth in nanocrystalline metal thin films under in situ ion-beam irradiation. J. ASTM Int. 4, 1 (2007)

    Article  Google Scholar 

  58. A. Gupta, X. Zhou, G.B. Thompson, G.J. Tucker, Role of grain boundary character and its evolution on interfacial solute segregation behavior in nanocrystalline Ni-P. Acta Mater. 190, 113 (2020)

    Article  CAS  Google Scholar 

  59. W.T. Geng, A.J. Freeman, R. Wu, C.B. Geller, J.E. Raynolds, Embrittling and strengthening effects of hydrogen, boron, and phosphorus on a Sigma5 nickel grain boundary. Phys. Rev. B. 60, 7149 (1999)

    Article  CAS  Google Scholar 

  60. M. Yamaguchi, M. Shiga, H. Kaburaki, Grain boundary decohesion by impurity segregation in a nickel-sulfur. Sys. Sci. 307, 393 (2005)

    CAS  Google Scholar 

  61. D. Lee, E. Barrera, J. Stark, H. Marcus, The influence of alloying elements on impurity induced grain boundary embrittlement. Metall. Trans. A 15, 1415 (1984)

    Article  Google Scholar 

  62. M.P. Seah, A. Kelly, Segregation and the strength of grain boundaries. Proc. R Soc. Lond. A 349, 535 (1976)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the Army Research Office, grant ARO-W911NF-17-1-0528, Dr. Michael Bakas program manager. Alabama Analytical Research Center (ARC) at the University of Alabama is also acknowledged for the use of the SEM/FIB and TEM instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Thompson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikmukhametov, I., Koenig, T.R., Tucker, G.J. et al. A rapid preparation method for in situ nanomechanical TEM tensile specimens. Journal of Materials Research 36, 2315–2324 (2021). https://doi.org/10.1557/s43578-021-00167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00167-9

Keywords

Navigation