Skip to main content
Log in

The effect of crystallographic orientation and interfaces on thermo-mechanical softening of a martensitic steel

  • Article
  • Focus Issue: Multiscale Materials Modeling of Interface-mediated Thermomechanical Behavior
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermo-mechanical softening forms the basis for hot working of metallic materials. In materials with hierarchical microstructures such as martensite, softening processes can be mediated or restricted by interfaces. In the present study, the operation of three distinct softening mechanisms in P91 martensitic steel during thermo-mechanical processing (TMP) has been investigated. The softening in the present case is found to arise from the interplay between microstructural strain, texture, and phase transformation. Further, softening characteristics vary with the TMP parameters. The manifestation of softening has been explored at the macroscopic, mesoscopic, and microscopic length scales. It has been found that each softening mechanism is differently mediated by the interfaces and is governed by local crystallographic orientation. Thermo-mechanical softening of martensite proceeds through orientation-dependent dynamic recrystallization. The role of specific interfaces in impeding this mechanism has been highlighted. In contrast, TMP of austenite proceeds through interface-mediated softening, combining the phenomena of recrystallization and phase transformation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. E.B. Kula, M. Azrin, Thermomechanical processing of ferrous alloys, in Advances in Deformation Processing, ed. by J.J. Burke, V. Weiss (Springer-Verlag, New York, 1978), p. 245

    Chapter  Google Scholar 

  2. S.V. Radcliffe, E.B. Kula, Deformation, transformation, and strength, in Fundamentals of Deformation Processing, ed. by W.A. Backofen, J.J. Burke, L.F. Coffin Jr., N.L. Reed, V. Weiss (Syracause University Press, Syracause, 1964), p. 321

    Google Scholar 

  3. V.F. Zackay, Thermomechanical processing. Mater. Sci. Eng. 25, 247 (1976)

    Article  CAS  Google Scholar 

  4. H.J. McQueen, Historical aspects of thermomechanical processing for steels. Mater. Sci. Forum 539–543, 4397 (2007)

    Article  Google Scholar 

  5. H.J. McQueen, Development of dynamic recrystallization theory. Mater. Sci. Eng. A 387, 203 (2004)

    Article  Google Scholar 

  6. M. Michiuchi, S. Nambu, Y. Ishimoto, J. Inoue, T. Koseki, Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation. Acta Mater. 57, 5283 (2009)

    Article  CAS  Google Scholar 

  7. L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, C.C. Tasan, Multiple mechanisms of lath martensite plasticity. Acta Mater. 121, 202 (2016)

    Article  CAS  Google Scholar 

  8. J.M. Rodriguez-Ibabe, Thin slab direct rolling of microalloyed steels. Mater. Sci. Forum 500, 49 (2005)

    Article  Google Scholar 

  9. Y. Shen, Y. Song, L. Hua, J. Lu, Influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts. J. Mater. Eng. Perform. 26, 1830 (2017)

    Article  CAS  Google Scholar 

  10. L. Pilloni, C. Cristalli, O. Tassa, I. Salvatori, S. Storai, Grain size reduction strategies on Eurofer. Nucl. Mater. Energy 17, 129 (2018)

    Article  Google Scholar 

  11. U. Krupp, M. Solovev, F. Honecker, B. Adams and J.-C. Florian: The potential of self-tempered martensite and bainite, in Improving the Fatigue Strength of Thermomechanically Processed Steels, in MATEC Web of Conferences 165, 20006 (2018).

  12. B. Aashranth, M.A. Davinci, D. Samantaray, U. Borah, Warm working as a potential substitute for hot working of austenitic steel in selected applications. Mater. Perform. Charact. 8, 957 (2019)

    CAS  Google Scholar 

  13. E.I. Poliak, J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 44, 127 (1996)

    Article  CAS  Google Scholar 

  14. B. Aashranth, D. Samantaray, M.A. Davinci, S. Murugesan, U. Borah, S.K. Albert, A.K. Bhaduri, A micro-mechanism to explain the post-DRX grain growth at temperatures > 0.8Tm. Mater. Charact. 136, 100 (2018)

    Article  CAS  Google Scholar 

  15. C. Ghosh, C. Aranas Jr., J.J. Jonas, Dynamic transformation of deformed austenite at temperatures above the Ae3. Prog. Mater. Sci. 82, 151 (2016)

    Article  CAS  Google Scholar 

  16. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60, 130 (2014)

    Article  CAS  Google Scholar 

  17. K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548 (2016)

    Article  CAS  Google Scholar 

  18. H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 54, 1279 (2006)

    Article  CAS  Google Scholar 

  19. H. Takayasu, Fractals in the Physical Sciences (Manchester University Press, Manchester, 1989)

    Google Scholar 

  20. M.A. Charpagne, J.C. Stinville, A.T. Polonsky, M.P. Echlin, S.P. Murray, Z. Chen, N. Bozzolo, J. Cormier, V. Valle and T.M. Pollock: Tuning strain localization in polycrystalline nickel-based superalloys by thermomechanical processing, in Superalloys 2020, edited by S. Tin, M. Hardy, J. Clews, J. Cormier, Q. Feng, J. Marcin, C O’Brien and A. Suzuki (The Minerals, Metals & Materials Series, USA 2020)

  21. H. Hu, Texture of metals. Texture 1, 233 (1974)

    Article  CAS  Google Scholar 

  22. W.F. Hosford, The Mechanics of Crystals and Textured Polycrystals (Oxford University Press, Oxford, 1993)

    Google Scholar 

  23. S.I. Wright, M.M. Nowell, D.P. Field, A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 17, 316 (2011)

    Article  CAS  Google Scholar 

  24. F. Barcelo, J.-L. Bechade, B. Fournier, Orientation relationship in various 9%Cr ferritic/martensitic steels–EBSD comparison between Nishiyama-Wassermann, Kurdjumov-Sachs and Greninger-Troiano. Phase Transit. 83, 601 (2010)

    Article  CAS  Google Scholar 

  25. S.K. Giri, A. Durgaprasad, K.V. Manikrishna, C.R. Anoop, S. Kundu, I. Samajdar, Exploring the origin of variant selection through martensite-austenite reconstruction. Philos. Mag. 99, 699 (2018)

    Article  Google Scholar 

  26. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 51, 1789 (2003)

    Article  CAS  Google Scholar 

  27. S.S. Babu, H.K.D.H. Bhadeshia, A direct study of grain boundary allotriomorphic ferrite crystallography. Mater. Sci. Eng. A 142, 209 (1991)

    Article  Google Scholar 

  28. D. Samantaray, S. Mandal, A.K. Bhaduri, A critical comparison of various data processing methods in simple uni-axial compression testing. Mater. Des. 32, 2797 (2011)

    Article  CAS  Google Scholar 

  29. B. Beausir and J.J. Fundenberger: Analysis Tools for Electron and X-ray diffraction, ATEX - software, www.atex-software.eu, Université de Lorraine - Metz, 2017.

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Indira Gandhi Centre for Atomic Research, Kalpakkam, Department of Atomic Energy, Government of India.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of interest for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aashranth, B., Shankar, G., Davinci, M.A. et al. The effect of crystallographic orientation and interfaces on thermo-mechanical softening of a martensitic steel. Journal of Materials Research 36, 2742–2753 (2021). https://doi.org/10.1557/s43578-021-00141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00141-5

Navigation