Skip to main content
Log in

Nanomaterial-based ROS-mediated strategies for combating bacteria and biofilms

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nowadays, bacterial infection has become a severe threat to human health worldwide. The arising of antibiotic-resistant bacteria resulting from antibiotic abusing further adds the burden of bacterial infection treatment. It is the first priority to find more antibiotic-free solutions for combating bacteria, especially multi-drug-resistant bacteria. Compared to other antibiotic-free solutions, reactive oxidative species (ROS)-mediated strategies have outstanding advantages. Highly active ROS can directly cause oxidative damage and are less possible to bring about bacterial resistance. Photodynamic therapy (PDT), sonodynamic therapy (SDT), and enzyme-like catalytic therapy are three main methods to massively manufacture ROS. With the rapid development of nanotechnology, nanoparticles have been widely used in PDT and SDT. Nanoparticles with enzyme-like activities are also extensively studied. In this review, we introduced the application of nanomaterials in three ROS-mediated methods for combating bacteria and biofilms, which might provide important insights for antibiotic-free antibacterial strategies.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Copyright 2019, Wiley.

Figure 2

Copyright 2020, Elsevier.

Figure 3
Figure 4

Copyright 2020, Elsevier.

Figure 5

Copyright 2017, Wiely.

Figure 6

Copyright 2019, Elsevier.

Figure 7

Copyright 2020, Elsevier.

Figure 8

Copyright 2020, American Chemical Society.

Figure 9

Similar content being viewed by others

References

  1. D.L. Paterson, P.N.A. Harris, Colistin resistance: a major breach in our last line of defence. Lancet Infect. Dis. 16(2), 132 (2016)

    Article  Google Scholar 

  2. Q. Yao, Z. Ye, L. Sun, Y. Jin, Q. Xu, M. Yang, Y. Wang, Y. Zhou, J. Ji, H. Chen, B. Wang, Bacterial infection microenvironment-responsive enzymatically degradable multilayer films for multifunctional antibacterial properties. J. Mater. Chem. B 5(43), 8532 (2017)

    Article  CAS  Google Scholar 

  3. B. Wang, K. Ren, H. Chang, J. Wang, J. Ji, Construction of degradable multilayer films for enhanced antibacterial properties. ACS Appl. Mater. Interfaces 5(10), 4136 (2013)

    Article  CAS  Google Scholar 

  4. D. Bagchi, V.S.S. Rathnam, P. Lemmens, I. Banerjee, S.K. Pal, NIR-Light-active ZnO-based nanohybrids for bacterial biofilm treatment. Acs Omega. 3(9), 10877 (2018)

    Article  CAS  Google Scholar 

  5. J. Gehring, B. Trepka, N. Klinkenberg, H. Bronner, D. Schleheck, S. Polarz, Sunlight-triggered nanoparticle synergy: teamwork of reactive oxygen species and nitric oxide released from mesoporous organosilica with advanced antibacterial activity. J. Am. Chem. Soc. 138(9), 3076 (2016)

    Article  CAS  Google Scholar 

  6. H.-C. Flemming, J. Wingender, The biofilm matrix. Nat. Rev. Microbiol. 8(9), 623 (2010)

    Article  CAS  Google Scholar 

  7. L.J. Farrell, R. Lo, J.J. Wanford, A. Jenkins, A. Maxwell, L.J.V. Piddock, Revitalizing the drug pipeline: AntibioticDB, an open access database to aid antibacterial research and development. J. Antimicrob. Chemother. 73(9), 2284 (2018)

    Article  CAS  Google Scholar 

  8. C.W. Stratton, Phages, fitness, virulence, and synergy: a novel approach for the therapy of infections caused by Pseudomonas aeruginosa. J. Infect. Dis. 215(5), 668 (2017)

    Google Scholar 

  9. V. Cattoir, B. Feldan, Future antibacterial strategies: from basic concepts to clinical challenges. J. Infect. Dis. 220(3), 350 (2019)

    Article  Google Scholar 

  10. J. Dai, R. Han, Y. Xu, N. Li, J. Wang, W. Dan, Recent progress of antibacterial natural products: future antibiotics candidates. Bioorg. Chem. 101, 103922 (2020)

    Article  CAS  Google Scholar 

  11. C. Ferriol-Gonzalez, P. Domingo-Calap, Phages for biofilm removal. Antibiotics-Basel 9(5), 268 (2020)

    Article  CAS  Google Scholar 

  12. M. Mutsch, W.G. Zhou, P. Rhodes, M. Bopp, R.T. Chen, T. Linder, C. Spyr, R. Steffen, Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N. Engl. J. Med. 350(9), 896 (2004)

    Article  CAS  Google Scholar 

  13. P.K. Mantravadi, K.A. Kalesh, R.C.J. Dobson, A.O. Hudson, A. Parthasarathy, The quest for novel antimicrobial compounds: emerging trends in research, development, and technologies. Antibiotics-Basel 8(1), 34 (2019)

    Google Scholar 

  14. Y. Wang, Y.N. Yang, Y.R. Shi, H. Song, C.Z. Yu, Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv. Mater. 32(18), 21 (2020)

    Google Scholar 

  15. Y. Xiong, X.D. Tian, H.W. Ai, Molecular tools to generate reactive oxygen species in biological systems. Bioconjugate Chem. 30(5), 1297 (2019)

    Article  CAS  Google Scholar 

  16. Q.Y. Jia, Q. Song, P. Li, W. Huang, Rejuvenated photodynamic therapy for bacterial infections. Adv. Healthc. Mater. 8(14), 19 (2019)

    Article  CAS  Google Scholar 

  17. G. LuTheryn, P. Glynne-Jones, J.S. Webb, D. Carugo, Ultrasound-mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge. Microb. Biotechnol. 13(3), 613 (2020)

    Article  CAS  Google Scholar 

  18. Z.W. Chen, Z.Z. Wang, J.S. Ren, X.G. Qu, Enzyme mimicry for combating bacteria and biofilms. Acc. Chem. Res. 51(3), 789 (2018)

    Article  CAS  Google Scholar 

  19. X.Q. Qian, Y.Y. Zheng, Y. Chen, Micro/nanoparticle-augmented sonodynamic therapy (SDT): breaking the depth shallow of photoactivation. Adv. Mater. 28(37), 8097 (2016)

    Article  CAS  Google Scholar 

  20. Y.Q. Wang, Y.Y. Jin, W. Chen, J.J. Wang, H. Chen, L. Sun, X. Li, J. Ji, Q. Yu, L.Y. Shen, B.L. Wang, Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem. Eng. J. 358, 74 (2019)

    Article  CAS  Google Scholar 

  21. D. Li, Y. Li, A. Shrestha, S. Wang, Q. Wu, L. Li, C. Guan, C. Wang, T. Fu, W. Liu, Y. Huang, P. Ji, T. Chen, Effects of programmed local delivery from a micro/nano-hierarchical surface on titanium implant on infection clearance and osteogenic induction in an infected bone defect. Adv. Healthc. Mater. 8(11), 1900002 (2019)

    Article  CAS  Google Scholar 

  22. N. Kashef, Y.Y. Huang, M.R. Hamblin, Advances in antimicrobial photodynamic inactivation at the nanoscale. Nanophotonics. 6(5), 853 (2017)

    Article  CAS  Google Scholar 

  23. L.Y. Huang, Y. Xuan, Y. Koide, T. Zhiyentayev, M. Tanaka, M.R. Hamblin, Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria. Lasers Surg. Med. 44(6), 490 (2012)

    Article  Google Scholar 

  24. F. Bolze, S. Jenni, A. Sour, V. Heitz, Molecular photosensitisers for two-photon photodynamic therapy. Chem. Commun. 53(96), 12857 (2017)

    Article  CAS  Google Scholar 

  25. S. Jenni, A. Sour, F. Bolze, B. Ventura, V. Heitz, Tumour-targeting photosensitisers for one- and two-photon activated photodynamic therapy. Org. Biomol. Chem. 17(27), 6585 (2019)

    Article  CAS  Google Scholar 

  26. D. Maiti, X. Tong, X. Mou, K. Yang, Carbon-based nanomaterials for biomedical applications: a recent study. Front. Pharmacol. 9, 1401 (2019)

    Article  CAS  Google Scholar 

  27. M.R. Hamblin, Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochem. Photobiol. Sci. 17(11), 1515 (2018)

    Article  CAS  Google Scholar 

  28. A.J. Stace, P. O’Brien, Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene. Philos. Trans. R. Soc. A 374(2076), 4 (2016)

    Article  CAS  Google Scholar 

  29. Y.Y. Huang, S.K. Sharma, R. Yin, T. Agrawal, L.Y. Chiang, M.R. Hamblin, Functionalized fullerenes in photodynamic therapy. J. Biomed. Nanotechnol. 10(9), 1918 (2014)

    Article  CAS  Google Scholar 

  30. G.P. Tegos, T.N. Demidova, D. Arcila-Lopez, H. Lee, T. Wharton, H. Gali, M.R. Hamblin, Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem. Biol. 12(10), 1127 (2005)

    Article  CAS  Google Scholar 

  31. M.B. Spesia, A.E. Milanesio, E.N. Durantini, Synthesis, properties and photodynamic inactivation of Escherichia coli by novel cationic fullerene C-60 derivatives. Eur. J. Med. Chem. 43(4), 853 (2008)

    Article  CAS  Google Scholar 

  32. Z.S. Lu, T.H. Dai, L.Y. Huang, D.B. Kurup, G.P. Tegos, A. Jahnke, T. Wharton, M.R. Hamblin, Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine 5(10), 1525 (2010)

    Article  CAS  Google Scholar 

  33. J.B. Hooper, D. Bedrov, G.D. Smith, Supramolecular self-organization in PEO-modified C-60 fullerene/water solutions: influence of polymer molecular weight and nanoparticle concentration. Langmuir 24(9), 4550 (2008)

    Article  CAS  Google Scholar 

  34. K. Ghosal, K. Sarkar, Biomedical applications of graphene nanomaterials and beyond. ACS Biomater. Sci. Eng. 4(8), 2653 (2018)

    Article  CAS  Google Scholar 

  35. J.C. Ge, M.H. Lan, W.M. Liu, Q.Y. Jia, L. Guo, B.J. Zhou, X.M. Meng, G.L. Niu, P.F. Wang, Graphene quantum dots as efficient, metal-free, visible-light-active photocatalysts. Sci. China-Mater. 59(1), 12 (2016)

    Article  CAS  Google Scholar 

  36. X.L. Zhang, C.B. Wei, Y. Li, D.S. Yu, Shining luminescent graphene quantum dots: synthesis, physicochemical properties, and biomedical applications. Trac-Trends Anal. Chem. 116, 109 (2019)

    Article  CAS  Google Scholar 

  37. B.Z. Ristic, M.M. Milenkovic, I.R. Dakic, B.M. Todorovic-Markovic, M.S. Milosavljevic, M.D. Budimir, V.G. Paunovic, M.D. Dramicanin, Z.M. Markovic, V.S. Trajkovic, Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35(15), 4428 (2014)

    Article  CAS  Google Scholar 

  38. W.S. Kuo, H.H. Chen, S.Y. Chen, C.Y. Chang, P.C. Chen, Y.I. Hou, Y.T. Shao, H.F. Kao, C.L.L. Hsu, Y.C. Chen, S.J. Chen, S.R. Wu, J.Y. Wang, Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials 120, 185 (2017)

    Article  CAS  Google Scholar 

  39. Y. Yu, L. Mei, Y. Shi, X. Zhang, K. Cheng, F. Cao, L. Zhang, J. Xu, X. Li, Z. Xu, Ag-Conjugated graphene quantum dots with blue light-enhanced singlet oxygen generation for ternary-mode highly-efficient antimicrobial therapy. J. Mater. Chem. B 8(7), 1371 (2020)

    Article  CAS  Google Scholar 

  40. B. Gu, W.B. Wu, G.X. Xu, G.X. Feng, F. Yin, P.H.J. Chong, J.L. Qu, K.T. Yong, B. Liu, precise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristics. Adv. Mater. 29(28), 7 (2017)

    Google Scholar 

  41. W.S. Kuo, T.S. Yeh, C.Y. Chang, J.C. Liu, C.H. Chen, E.C. So, P.C. Wu, Amino-functionalized nitrogen-doped graphene quantum dots for efficient enhancement of two-photon-excitation photodynamic therapy: functionalized nitrogen as a bactericidal and contrast agent. Int. J. Nanomed. 15, 6961 (2020)

    Article  CAS  Google Scholar 

  42. N. Waiskopf, Y. Ben-Shahar, U. Banin, Photocatalytic hybrid semiconductor-metal nanoparticles; from synergistic properties to emerging applications. Adv. Mater. 30(41), 1706697 (2018)

    Article  CAS  Google Scholar 

  43. Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6), 5164 (2012)

    Article  CAS  Google Scholar 

  44. D. Ziental, B. Czarczynska-Goslinska, D.T. Mlynarczyk, A. Glowacka-Sobotta, B. Stanisz, T. Goslinski, L. Sobotta, Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials. 10(2), 387 (2020)

    Article  CAS  Google Scholar 

  45. P.P. Mahamuni-Badiger, P.M. Patil, M.V. Badiger, P.R. Patel, B.S. Thorat-Gadgil, A. Pandit, R.A. Bohara, Biofilm formation to inhibition: role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C 108, 110319 (2020)

    Article  CAS  Google Scholar 

  46. Y. Li, Y.F. Cheng, Photocatalytic anti-bioadhesion and bacterial deactivation on nanostructured iron oxide films. J. Mater. Chem. B 6(10), 1458 (2018)

    Article  CAS  Google Scholar 

  47. A.I.M. Zihnil, I. In, S.Y. Park, Reusable Fe3O4 and WO3 immobilized onto montmorillonite as a photo-reactive antimicrobial agent. RSC Adv. 6(59), 54486 (2016)

    Article  CAS  Google Scholar 

  48. F. Nishino, M. Jeem, L. Zhang, K. Okamoto, S. Okabe, S. Watanabe, Formation of CuO nano-flowered surfaces via submerged photo-synthesis of crystallites and their antimicrobial activity. Sci. Rep. 7, 1063 (2017)

    Article  CAS  Google Scholar 

  49. J. Zhang, X. Suo, J. Zhang, B. Han, P. Li, Y. Xue, H. Shi, One-pot synthesis of Au/TiO2 heteronanostructure composites with SPR effect and its antibacterial activity. Mater. Lett. 162, 235 (2016)

    Article  CAS  Google Scholar 

  50. W. He, H. Wu, W.G. Wamer, H.-K. Kim, J. Zheng, H. Jia, Z. Zheng, J.-J. Yin, Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers. ACS Appl. Mater. Interfaces. 6(17), 15527 (2014)

    Article  CAS  Google Scholar 

  51. Z.N. Kayani, Maria, S. Riaz, S. Naseem, Magnetic and antibacterial studies of sol-gel dip coated Ce doped TiO2 thin films: influence of Ce contents. Ceram. Int. 46(1), 381 (2020)

    Article  CAS  Google Scholar 

  52. X. Ma, Q. Xiang, Y. Liao, T. Wen, H. Zhang, Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E-coli disinfection and organic pollutant degradation. Appl. Surf. Sci. 457, 846 (2018)

    Article  CAS  Google Scholar 

  53. Y. Jia, S. Zhan, S. Ma, Q. Zhou, Fabrication of TiO2-Bi2WO6 binanosheet for enhanced solar photocatalytic disinfection of E-coli: insights on the mechanism. ACS Appl. Mater. Interfaces 8(11), 6841 (2016)

    Article  CAS  Google Scholar 

  54. Y.-W. Baek, Y.-J. An, Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ. 409(8), 1603 (2011)

    Article  CAS  Google Scholar 

  55. A. Sulek, B. Pucelik, J. Kuncewicz, G. Dubin, J.M. Dabrowski, Sensitization of TiO2 by halogenated porphyrin derivatives for visible light biomedical and environmental photocatalysis. Catal. Today 335, 538 (2019)

    Article  CAS  Google Scholar 

  56. H.E. Karahan, C. Wiraja, C.J. Xu, J. Wei, Y.L. Wang, L. Wang, F. Liu, Y. Chen, Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv. Healthc. Mater. 7(13), 18 (2018)

    Google Scholar 

  57. M.Y. Xia, Y. Xie, C.H. Yu, G.Y. Chen, Y.H. Li, T. Zhang, Q. Peng, Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. J. Control. Rel. 307, 16 (2019)

    Article  CAS  Google Scholar 

  58. T. Mocan, C.T. Matea, T. Pop, O. Mosteanu, A.D. Buzoianu, S. Suciu, C. Puia, C. Zdrehus, C. Iancu, L. Mocan, Carbon nanotubes as anti-bacterial agents. Cell. Mol. Life Sci. 74(19), 3467 (2017)

    Article  CAS  Google Scholar 

  59. J.Y. Chen, X. Zhang, H. Cai, Z.Q. Chen, T. Wang, L.L. Jia, J. Wang, Q.B. Wan, X.B. Pei, Osteogenic activity and antibacterial effect of zinc oxide/carboxylated graphene oxide nanocomposites: preparation and in vitro evaluation. Colloid Surf. B 147, 397 (2016)

    Article  CAS  Google Scholar 

  60. V.T. Anju, P. Paramanantham, S.B.S. Lal, A. Sharan, M.H. Alsaedi, T.M.S. Dawoud, S. Asad, S. Busi, Antimicrobial photodynamic activity of rose bengal conjugated multi walled carbon nanotubes against planktonic cells and biofilm of Escherichia coli. Photodiagn. Photodyn. Ther. 24, 300 (2018)

    Article  CAS  Google Scholar 

  61. T. Akbari, M. Pourhajibagher, F. Hosseini, N. Chiniforush, E. Gholibegloo, M. Khoobi, S. Shahabi, A. Bahador, The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against Enterococcus faecalis. Photodiagn. Photodyn. Ther. 20, 148 (2017)

    Article  CAS  Google Scholar 

  62. M.Q. Mesquita, C.J. Dias, S. Gamelas, M. Fardilha, M.G.P.M.S. Neves, M.A.F. Faustino, An Insight on the role of photosensitizer nanocarriers for photodynamic therapy. Anais Da Academia Brasileira De Ciencias 90, 1101 (2018)

    Article  CAS  Google Scholar 

  63. Y. Li, T. Wen, R. Zhao, X. Liu, T. Ji, H. Wang, X. Shi, J. Shi, J. Wei, Y. Zhao, X. Wu, G. Nie, Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 8(11), 11529 (2014)

    Article  CAS  Google Scholar 

  64. D.C. Ferreira, C.S. Monteiro, C.R. Chaves, G.A.M. Safar, R.L. Moreira, M.V.B. Pinheiro, D.C.S. Martins, L.O. Ladeira, K. Krambrock, Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy. Colloid Surf. B 150, 297 (2017)

    Article  CAS  Google Scholar 

  65. M.A. Sherwani, S. Tufail, A.A. Khan, M. Owais, Gold nanoparticle-photosensitizer conjugate based photodynamic inactivation of biofilm producing cells: potential for treatment of C. albicans Infection in BALB/c Mice. PLoS ONE 10(7), 0131684 (2015)

    Article  CAS  Google Scholar 

  66. E. Darabpour, N. Kashef, S.M. Amini, S. Kharrazi, G.E. Djavid, Fast and effective photodynamic inactivation of 4-day-old biofilm of methicillin-resistant Staphylococcus aureus using methylene blue-conjugated gold nanoparticles. J. Drug Deliv. Sci. Technol. 37, 134 (2017)

    Article  CAS  Google Scholar 

  67. M.K. Khaing Oo, Y. Yang, Y. Hu, M. Gomez, H. Du, H. Wang, Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano 6(3), 1939 (2012)

    Article  CAS  Google Scholar 

  68. S. Chernousova, M. Epple, Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. International Edition 52(6), 1636 (2013)

    Article  CAS  Google Scholar 

  69. O. Planas, N. Macia, M. Agut, S. Nonell, B. Heyne, Distance-dependent plasmon-enhanced singlet oxygen production and emission for bacterial inactivation. J. Am. Chem. Soc. 138(8), 2762 (2016)

    Article  CAS  Google Scholar 

  70. Y.-J. Cheng, J.-J. Hu, S.-Y. Qin, A.-Q. Zhang, X.-Z. Zhang, Recent advances in functional mesoporous silica-based nanoplatforms for combinational photo-chemotherapy of cancer. Biomaterials 232, 119738 (2020)

    Article  CAS  Google Scholar 

  71. M. Mirzahosseinipour, K. Khorsandi, R. Hosseinzadeh, M. Ghazaeian, F.K. Shahidi, Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagn. Photodyn. Ther. 29, 101639 (2020)

    Article  CAS  Google Scholar 

  72. Y. Guo, S. Rogelj, P. Zhang, Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria. Nanotechnology 21(6), 065102 (2010)

    Article  CAS  Google Scholar 

  73. J.-F. Lin, J. Li, A. Gopal, T. Munshi, Y.-W. Chu, J.-X. Wang, T.-T. Liu, B. Shi, X. Chen, L. Yan, Synthesis of photo-excited Chlorin e6 conjugated silica nanoparticles for enhanced anti-bacterial efficiency to overcome methicillin-resistant Staphylococcus aureus. Chem. Commun. 55(18), 2656 (2019)

    Article  CAS  Google Scholar 

  74. F. Xu, M. Hu, C. Liu, S.K. Choi, Yolk-structured multifunctional up-conversion nanoparticles for synergistic photodynamic-sonodynamic antibacterial resistance therapy. Biomater. Sci. 5(4), 678 (2017)

    Article  CAS  Google Scholar 

  75. M. Martinez-Carmona, Y.K. Gun’ko, M. Vallet-Regi, Mesoporous silica materials as drug delivery: “the nightmare” of bacterial infection. Pharmaceutics 10(4), 29 (2018)

    Article  CAS  Google Scholar 

  76. J. Sun, Y. Fan, P. Zhang, X. Zhang, Q. Zhou, J. Zhao, L. Ren, Self-enriched mesoporous silica nanoparticle composite membrane with remarkable photodynamic antimicrobial performances. J. Colloid Interface Sci. 559, 197 (2020)

    Article  CAS  Google Scholar 

  77. A.C. Scanone, N.S. Gsponer, M. Gabriela Alvarez, E.N. Durantini, Photodynamic properties and photoinactivation of microorganisms mediated by 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin covalently linked to silica-coated magnetite nanoparticles. J. Photochem. Photobiol. A 346, 452 (2017)

    Article  CAS  Google Scholar 

  78. X. Ding, A. Wang, W. Tong, F.-J. Xu, Biodegradable antibacterial polymeric nanosystems: a new hope to cope with multidrug-resistant bacteria. Small 15(20), 1900999 (2019)

    Article  CAS  Google Scholar 

  79. S.S. Lucky, K.C. Soo, Y. Zhang, Nanoparticles in photodynamic therapy. Chem. Rev. 115(4), 1990 (2015)

    Article  CAS  Google Scholar 

  80. K. Chen, Y. Fen, Y. Zhang, L. Yu, X. Hao, F. Shao, Z. Dou, C. An, Z. Zhuang, Y. Luo, Y. Wang, J. Wu, P. Ji, T. Chen, H. Wang, Entanglement-driven adhesion, self-healing, and high stretchability of double-network PEG-based hydrogels. ACS Appl. Mater. Interfaces 11(40), 36458 (2019)

    Article  CAS  Google Scholar 

  81. G. Boccalini, L. Conti, C. Montis, D. Bani, A. Bencini, D. Berti, C. Giorgi, A. Mengoni, B. Valtancoli, Methylene blue-containing liposomes as new photodynamic anti-bacterial agents. J. Mater. Chem B 5(15), 2788 (2017)

    Article  CAS  Google Scholar 

  82. L.-Y. Guo, S.-Z. Yan, X. Tao, Q. Yang, Q. Li, T.-S. Wang, S.-Q. Yu, S.-L. Chen, Evaluation of hypocrellin A-loaded lipase sensitive polymer micelles for intervening methicillin-resistant Staphylococcus Aureus antibiotic-resistant bacterial infection. Mater. Sci. Eng. C 106, 110230 (2020)

    Article  CAS  Google Scholar 

  83. S. Jeong, J. Lee, B.N. Im, H. Park, K. Na, Combined photodynamic and antibiotic therapy for skin disorder via lipase-sensitive liposomes with enhanced antimicrobial performance. Biomaterials 141, 243 (2017)

    Article  CAS  Google Scholar 

  84. Y. Liu, H.C. van der Mei, B.R. Zhao, Y. Zhai, T.J. Cheng, Y.F. Li, Z.K. Zhang, H.J. Busscher, Y.J. Ren, L.Q. Shi, Eradication of multidrug-resistant staphylococcal infections by light-activatable micellar nanocarriers in a murine model. Adv. Funct. Mater. 27(44), 11 (2017)

    Google Scholar 

  85. X. Wang, L. Tan, X. Liu, Z. Cui, X. Yang, K.W.K. Yeung, P.K. Chu, S. Wu, Construction of perfluorohexane/IR780@liposome coating on Ti for rapid bacteria killing under permeable near infrared light. Biomater. Sci. 6(9), 2460 (2018)

    Article  Google Scholar 

  86. R. Singh, G. Dumlupinar, S. Andersson-Engels, S. Melgar, Emerging applications of upconverting nanoparticles in intestinal infection and colorectal cancer. Int. J. Nanomed. 14, 1027 (2019)

    Article  CAS  Google Scholar 

  87. R.D.A. Alvares, A. Gautam, R.S. Prosser, F. van Veggel, P.M. Macdonald, Shell versus core Dy3+ contributions to nmr water relaxation in sodium lanthanide fluoride core-shell nanoparticles an investigation using 0–17 and H-1 NMR. J. Phys. Chem. C 121(32), 17552 (2017)

    Article  CAS  Google Scholar 

  88. A. Gautam, P. Komal, Probable ideal size of Ln(3+)-based upconversion nanoparticles for single and multimodal imaging. Coord. Chem. Rev. 376, 393 (2018)

    Article  CAS  Google Scholar 

  89. M.R. Hamblin, Upconversion in photodynamic therapy: plumbing the depths. Dalton Trans. 47(26), 8571 (2018)

    Article  CAS  Google Scholar 

  90. Y. Zhang, P. Huang, D. Wang, J. Chen, W. Liu, P. Hu, M. Huang, X. Chen, Z. Chen, Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles. Nanoscale 10(33), 15485 (2018)

    Article  CAS  Google Scholar 

  91. M. Qi, X. Li, X. Sun, C. Li, F.R. Tay, M.D. Weir, B. Dong, Y. Zhou, L. Wang, H.H.K. Xu, Novel nanotechnology and near-infrared photodynamic therapy to kill periodontitis-related biofilm pathogens and protect the periodontium. Dent. Mater. 35(11), 1665 (2019)

    Article  CAS  Google Scholar 

  92. V. Choi, M.A. Rajora, G. Zheng, Activating drugs with sound: mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjug. Chem. 31(4), 967 (2020)

    Article  CAS  Google Scholar 

  93. J. Wu, W.L. Nyborg, Ultrasound, cavitation bubbles and their interaction with cells. Adv. Drug Deliv. Rev. 60(10), 1103 (2008)

    Article  CAS  Google Scholar 

  94. K.T. Byun, K.Y. Kim, H.Y. Kwak, Sonoluminescence characteristics from micron and submicron bubbles. J. Korean Phys. Soc. 47(6), 1010 (2005)

    Google Scholar 

  95. M.J.W. Pickworth, P.P. Dendy, T.G. Leighton, A.J. Walton, Studies of the cavitational effects of clinical ultrasound by sonoluminescence. 2. Thresholds for sonoluminescence from a therapeutic ultrasound beam and the effect of temperature and duty cycle. Phys. Med. Biol. 33(11), 1249 (1988)

    Article  Google Scholar 

  96. T.K. Saksena, Sonoluminescence from stable cavitation. J. Chem. Phys. 53(5), 1722 (1970)

    Article  CAS  Google Scholar 

  97. D. Costley, C. Mc Ewan, C. Fowley, A.P. McHale, J. Atchison, N. Nomikou, J.F. Callan, Treating cancer with sonodynamic therapy: a review. Int. J. Hyperthermia 31(2), 107 (2015)

    Article  CAS  Google Scholar 

  98. B.P. Timko, T. Dvir, D.S. Kohane, Remotely triggerable drug delivery systems. Adv. Mater. 22(44), 4925 (2010)

    Article  CAS  Google Scholar 

  99. X. Pang, D. Li, J. Zhu, J. Cheng, G. Liu, Beyond antibiotics: photo/sonodynamic approaches for bacterial theranostics. Nano-Micro Lett. 12(1), 144 (2020)

    Article  CAS  Google Scholar 

  100. X. Lin, J. Song, X. Chen, H. Yang, Ultrasound-activated sensitizers and applications. Angew. Chem. 59, 14212 (2020)

    Article  CAS  Google Scholar 

  101. J.E. Lee, N. Lee, T. Kim, J. Kim, T. Hyeon, Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 44(10), 893 (2011)

    Article  CAS  Google Scholar 

  102. V. Frenkel, Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev. 60(10), 1193 (2008)

    Article  CAS  Google Scholar 

  103. L. Fusco, A. Gazzi, G. Peng, Y. Shin, S. Vranic, D. Bedognetti, F. Vitale, A. Yilmazer, X. Feng, B. Fadeel, C. Casiraghi, L.G. Delogu, Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 10(12), 5435 (2020)

    Article  CAS  Google Scholar 

  104. Z. Gu, S. Zhu, L. Yan, F. Zhao, Y. Zhao, Graphene-based smart platforms for combined cancer therapy. Adv. Mater. 31(9), 1800662 (2019)

    Article  CAS  Google Scholar 

  105. K.d.O. Goncalvez, D.P. Vieira, L.C. Courrol, Study of THP-1 macrophage viability after sonodynamic therapy using methyl ester of 5-aminolevulinic acid gold nanoparticles. Ultrasound Med. Biol. 44(9), 2009 (2018).

  106. K.O. Goncalves, D.P. Vieira, L.C. Courrol, Synthesis and characterization of aminolevulinic acid gold nanoparticles: photo and sonosensitizer agent for atherosclerosis. J. Luminesc. 197, 317 (2018)

    Article  CAS  Google Scholar 

  107. Y.-J. Ho, C.-H. Wu, Q.-F. Jin, C.-Y. Lin, P.-H. Chiang, N. Wu, C.-H. Fan, C.-M. Yang, C.-K. Yeh, Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with beta-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy. Biomaterials 232, 11923 (2020)

    Article  CAS  Google Scholar 

  108. X. Lin, Y. Qiu, L. Song, S. Chen, X. Chen, G. Huang, J. Song, X. Chen, H. Yang, Ultrasound activation of liposomes for enhanced ultrasound imaging and synergistic gas and sonodynamic cancer therapy. Nanosc. Horizons. 4(3), 747 (2019)

    Article  CAS  Google Scholar 

  109. S. Son, J.H. Kim, X. Wang, C. Zhang, S.A. Yoon, J. Shin, A. Sharma, M.H. Lee, L. Cheng, J. Wu, J.S. Kim, Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 49(11), 3244 (2020)

    Article  CAS  Google Scholar 

  110. D.F. de Almeida, M. Hungria, C.T. Guimaraes, R.V. Antonio, F.C. Almeida, L.G.P. de Almeida, R. de Almeida, J.A. Alves-Gomes, E.M. Andrade, J. Araripe, M.F.F. de Araujo, S. Astolfi, V. Azevedo, A.J. Baptista, L.A.M. Bataus, J.D. Batista, A. Belo, C. van den Berg, M. Bogo, S. Bonatto, J. Bordignon, M.M. Brigido, C.A. Brito, M. Brocchi, H.A. Burity, A.A. Camargo, D.D. Cardoso, N.P. Carneiro, B.S. Cavada, L.M.O. Chueire, T.B. Creczynski-Pasa, N.C. da Cunha, N. Fagundes, C.L. Falcao, F. Fantinatti, L.P. Farias, M.S.S. Felipe, L.P. Ferrari, J.A. Ferro, M.T. Ferro, G.R. Franco, N.S.A. de Freitas, L.R. Furlan, R.T. Gazzinelli, E.A. Gomes, P.R. Goncalves, T.B. Grangeiro, D. Grattapaglia, E.C. Grisard, E.S. Hanna, S.N. Jardim, J. Laurino, L.C.T. Leoi, L.F.A. Lima, M.D. Loureiro, M. de Lyra, H.M.F. Madeira, G.P. Manfio, A.Q. Maranhao, W.S. Martins, S.M.Z. di Mauro, S.R.B. de Medeiros, R.D. Meissner, M.A.M. Moreira, F.F. do Nascimento, M.F. Nicolas, J.G. Oliveira, S.C. Oliveira, R.F.C. Paixao, J.A. Parente, F.D.P. Pedrosa, S.D.J. Pena, J.O. Pereira, M. Pereira, L.S.C. Pinto, L.D. Pinto, J.I.R. Porto, D.P. Potrich, C.E. Ramalho-Neto, A.M.M. Reis, L.U. Rigo, E. Rondinelli, E.B.P. do Santos, F.R. Santos, M.P.C. Schneider, H.N. Seuanez, A.M.R. Silva, A.L.D. da Silva, D.W. Silva, R. Silva, I.D. Simoes, D. Simon, C.M.D. Soares, R.D.A. Soares, E.M. Souza, K.R.L. de Souza, R.C. Souza, M.B.R. Steffens, M. Steindel, S.R. Teixeira, T. Urmenyi, A. Vettore, R. Wassem, A. Zaha, A.J.G. Simpson and J. Cascardo, The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc. Natl. Acad. Sci. USA 100(20), 11660 (2003).

  111. K.C. Sadanala, P.K. Chaturvedi, Y.M. Seo, J.M. Kim, Y.S. Jo, Y.K. Lee, W.S. Ahn, Sono-photodynamic combination therapy: a review on sensitizers. Anticancer Res. 34(9), 4657 (2014)

    CAS  Google Scholar 

  112. K. Su, L. Tan, X. Liu, Z. Cui, Y. Zheng, B. Li, Y. Han, Z. Li, S. Zhu, Y. Liang, X. Feng, X. Wang, S. Wu, Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano 14(2), 2077 (2020)

    Article  CAS  Google Scholar 

  113. R.H. Fang, B.T. Luk, C.-M.J. Hu, L. Zhang, Engineered nanoparticles mimicking cell membranes for toxin neutralization. Adv. Drug Deliv. Rev. 90, 69 (2015)

    Article  CAS  Google Scholar 

  114. Y. Zhao, M. Hu, Y. Zhang, J. Liu, C. Liu, S.K. Choi, Z. Zhang, L. Song, Multifunctional therapeutic strategy of Ag-synergized dual-modality upconversion nanoparticles to achieve the rapid and sustained cidality of methicillin-resistant Staphylococcus aureus. Chem. Eng. J. 385, 123980 (2020)

    Article  Google Scholar 

  115. X. Pang, Q.C. Xiao, Y. Cheng, E. Ren, L.L. Lian, Y. Zhang, H.Y. Gao, X.Y. Wang, W.N. Leung, X.Y. Chen, G. Liu, C.S. Xu, Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections. ACS Nano 13(2), 2427 (2019)

    CAS  Google Scholar 

  116. Y. Wang, C. Chen, D. Zhang, J. Wang, Bifunctionalized novel Co-V MMO nanowires: Intrinsic oxidase and peroxidase like catalytic activities for antibacterial application. Appl. Catal. B 261, 118256 (2020)

    Article  CAS  Google Scholar 

  117. C. Chen, Y. Wang, D. Zhang, Bifunctional nanozyme activities of layered double hydroxide derived Co-Al-Ce mixed metal oxides for antibacterial application. J. Oceanol. Limnol. 38, 1233 (2020)

    Article  CAS  Google Scholar 

  118. Y. Li, W. Ma, J. Sun, M. Lin, Y. Niu, X. Yang, Y. Xu, Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo. Carbon 159, 149 (2020)

    Article  CAS  Google Scholar 

  119. R. Zhang, K. Fan, X. Yan, Nanozymes: created by learning from nature. Sci. China Life Sci. 63(8), 1183 (2020)

    Article  Google Scholar 

  120. Y. Chen, H. Cong, Y. Shen, B. Yu, Biomedical application of manganese dioxide nanomaterials. Nanotechnology 31(20), 202001 (2020)

    Article  CAS  Google Scholar 

  121. L.Z. Gao, K.M. Giglio, J.L. Nelson, H. Sondermann, A.J. Travis, Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5), 2588 (2014)

    Article  CAS  Google Scholar 

  122. D. Zhang, Y.X. Zhao, Y.J. Gao, F.P. Gao, Y.S. Fan, X.J. Li, Z.Y. Duan, H. Wang, Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. J. Mater. Chem. B 1(38), 5100 (2013)

    Article  CAS  Google Scholar 

  123. C. Xu, Y.H. Lin, J.S. Wang, L. Wu, W.L. Wei, J.S. Ren, X.G. Qu, Nanoceria-triggered synergetic drug release based on CeO2-capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO2. Adv. Healthc. Mater. 2(12), 1591 (2013)

    Article  CAS  Google Scholar 

  124. F. Natalio, R. Andre, A.F. Hartog, B. Stoll, K.P. Jochum, R. Wever, W. Tremel, Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 7(8), 530 (2012)

    Article  CAS  Google Scholar 

  125. W.Y. Yin, J. Yu, F.T. Lv, L. Yan, L.R. Zheng, Z.J. Gu, Y.L. Zhao, Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10(12), 11000 (2016)

    Article  CAS  Google Scholar 

  126. Y. Zhan, Y. Zeng, L. Li, L. Guo, F. Luo, B. Qiu, Y. Huang, Z. Lin, Cu2+-modified boron nitride nanosheets-supported subnanometer gold nanoparticles: an oxidase-mimicking nanoenzyme with unexpected oxidation properties. Anal. Chem. 92(1), 1236 (2020)

    Article  CAS  Google Scholar 

  127. R. Wu, Y. Chong, G. Fang, X. Jiang, Y. Pan, C. Chen, J.-J. Yin, C. Ge, Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing. Adv. Funct. Mater. 28(28), 1801484 (2018)

    Article  CAS  Google Scholar 

  128. G. Fang, W. Li, X. Shen, J.M. Perez-Aguilar, Y. Chong, X. Gao, Z. Chai, C. Chen, C. Ge, R. Zhou, Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. (2018). https://doi.org/10.1038/s41467-017-02502-3

    Article  Google Scholar 

  129. W. He, Y.-T. Zhou, W.G. Warner, X. Hu, X. Wu, Z. Zheng, M.D. Boudreau, J.-J. Yin, Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 34(3), 765 (2013)

    Article  CAS  Google Scholar 

  130. W. Luo, C. Zhu, S. Su, D. Li, Y. He, Q. Huang, C. Fan, Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4(12), 7451 (2010)

    Article  CAS  Google Scholar 

  131. Y. Tao, E.G. Ju, J.S. Ren, X.G. Qu, Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 27(6), 1097 (2015)

    Article  CAS  Google Scholar 

  132. G. Fang, W.F. Li, X.M. Shen, J.M. Perez-Aguilar, Y. Chong, X.F. Gao, Z.F. Chai, C.Y. Chen, C.C. Ge, R.H. Zhou, Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. 9, 9 (2018)

    Article  CAS  Google Scholar 

  133. J. Zhu, S. Mu, Defect engineering in the carbon-based electrocatalysts: insight into the intrinsic carbon defects. Adv. Funct. Mater. 30, 2001097 (2020)

    Article  CAS  Google Scholar 

  134. Z. Shi, W. Yang, Y. Gu, T. Liao, Z. Sun, Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv. Sci. 7, 2001069 (2020)

    Article  CAS  Google Scholar 

  135. J. An, G. Li, Y. Zhang, T. Zhang, X. Liu, F. Gao, M. Peng, Y. He, H. Fan, recent advances in enzyme-nanostructure biocatalysts with enhanced activity. Catalysts 10(3), 338 (2020)

    Article  CAS  Google Scholar 

  136. S.-C. Wei, Y.-W. Lin, H.-T. Chang, Carbon dots as artificial peroxidases for analytical applications. J. Anal. Test. 3(3), 191 (2019)

    Article  Google Scholar 

  137. H. Sun, N. Gao, K. Dong, J. Ren, X. Qu, Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8(6), 6202 (2014)

    Article  CAS  Google Scholar 

  138. S. Cai, X. Jia, Q. Han, X. Yan, R. Yang, C. Wang, Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 10(6), 2056 (2017)

    Article  CAS  Google Scholar 

  139. Z. Wang, K. Dong, Z. Liu, Y. Zhang, Z. Chen, H. Sun, J. Ren, X. Qu, Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113, 145 (2017)

    Article  CAS  Google Scholar 

  140. S. Chen, Y. Quan, Y.-L. Yu, J.-H. Wang, Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater. Sci. Eng. 3(3), 313 (2017)

    Article  CAS  Google Scholar 

  141. W.S. Wang, B.L. Li, H.L. Yang, Z.F. Lin, L.L. Chen, Z. Li, J.Y. Ge, T. Zhang, H. Xia, L.H. Li, Y. Lu, Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Res. 13, 2156 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 82071164, 81771122, 81970985, 81970984), Key research program of Sichuan Science and technology Department (Grant No. 2021YFS0052), and Open Project of Northwest Minzu University Key Laboratory of Oral Disease (Grant No. SZD201901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wang or Xibo Pei.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Zhang, S., Pan, F. et al. Nanomaterial-based ROS-mediated strategies for combating bacteria and biofilms. Journal of Materials Research 36, 822–845 (2021). https://doi.org/10.1557/s43578-021-00134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00134-4

Keywords

Navigation