Skip to main content
Log in

Pressure-induced structural transition and huge enhancement of superconducting properties of single-crystal Fe0.99Ni0.01Se0.5Te0.5 unconventional superconductor

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report high-pressure structural studies (52 GPa) at room temperature combined with magnetic [(M(T):1GPa] and electrical resistivity [(ρ(T):0-21GPa)] measurements down to 2 K on Fe0.99Ni0.01Se0.5Te0.5 superconductor using designer diamond anvils (D-DAC) pressure cell. The M(T) data show huge enhancement of superconducting transition temperature (Tc) from 8.62 to 14.8 K (1 GPa) and ρ(T) reveal maximum enhancement of Tc ~ 30.5 K at 3 GPa (dTc/dP =  ~ 7.19 K/GPa) followed by moderate decrease of Tc up to 19 K at 7.5 GPa, and further increasing pressure Tc gets vanished at 10.6 GPa. The reduction of Tc due to the occurrence of structural transition that is likely associated with possible reduction of charge carriers in the density of states in Fermi surface. The high-pressure XRD measurement shows tetragonal phase exists up to 7 GPa, followed by mixed phase which is visible between 7.5 GPa and 14.5 GPa. The structural transformation occurs at 15 GPa from tetragonal (P4/nmm) to NiAs -type hexagonal phase (P63/mmc) and it is stable up to 52 GPa, confirmed from the equation of state (EOS) and it can be correlated with variation of Tc under pressure for Fe0.99Ni0.01Se0.5Te0.5 chalcogenide superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Fig. 10

Similar content being viewed by others

References

  1. T. Imai, K. Ahilan, F.L. Ning, T.M. McQueen, R.J. Cava, Why does undoped fese become a high-Tc superconductor under pressure? Phys. Rev. Lett. 102, 177005–177009 (2009)

    Article  CAS  Google Scholar 

  2. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3296 (2008).

  3. S. Medvedev, T.M. McQueen, I. Trojan, T. Palasyuk, M. I. Eremets, R.J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, C. Felser, Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat. Mater. 8, 630–633 (2009).

  4. S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, K. Prassides, Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe(Tc=37K). Phys. Rev. B. 80, 064506–064511 (2009)

    Article  CAS  Google Scholar 

  5. G. Garbarino, A. Sow, P. Lejay, A. Sulpice, P. Toulemonde, M. Mezouar, M. Nu´n˜ez-Regueiro: High-temperature superconductivity (Tc onset at 34 K) in the high-pressure orthorhombic phase of FeSe. Europhys. Lett. 86, 27001–27006 (2009).

  6. C. Wang, S. Jiang, Q. Tao, Z. Ren, Y.K. Li, L.J. Li, C. Feng, J.H. Dai, G.H. Cao, Superconductivity in LaFeAs1-xPxO: Effect of chemical pressures and bond covalency. Europhys. Lett. 82, 47002–47007 (2009)

    Article  CAS  Google Scholar 

  7. W. Guan, Y.H. Xu, S.R. Sheen, Y.C. Chen, Y.J.T. Wei, H.F. Lai, M.K. Wu, J.C. Ho, Ion-size effect on TN in (R, Pr„)Ba2Cu307 systems (R =Lu, Yb, Tm, Er, Y, Ho, Dy, Gd, Eu, Sm, and Nd). Phys. Rev. B. 49, 15993–15999 (1994)

    Article  CAS  Google Scholar 

  8. E. Böhmer, V. Taufour, W.E. Straszheim, T. Wolf, P.C. Canfield, Variation of transition temperatures and residual resistivity ratio in vapor-grown FeSe. Phys. Rev. B 9, 024526–024531 (2016)

    Article  CAS  Google Scholar 

  9. F. Hardy, M. He, L. Wang, T. Wolf, P. Schweiss, M. Merz, M. Barth, P. Adelmann, R. Eder, A.A. Haghighirad C. Meingas, Calorimetric evidence of nodal gaps in the nematic superconductor FeSe. Phys. Rev. B 99, 035157–035168 (2019).

  10. M.H. Fang, H.M. Pham, B. Qian, T.J. Liu, E.K. Vehstedt, Y. Liu, L. Spinu, Z.Q. Mao: Superconductivity close to magnetic instability in Fe(Se1−xTex)0.82. Phys. Rev. B 78, 224503–224507 (2008).

  11. Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, Y. Takano, Superconductivity in S-substituted FeTe. Appl. Phys. Lett 94, 012503–012505 (2009)

    Article  CAS  Google Scholar 

  12. Y. Mizuguchi, F. Tomoiioka, S. Tsuda, T. Yamaguchi, Y. Takano, Substitution effects on FeSe superconductor. J. Phys. Soc Jpn. 78, 074712–074716 (2009)

    Article  CAS  Google Scholar 

  13. R. Shipra, H. Takeya, K. Hirata, A. Sundaresa, Effects of Ni and Co doping on the physical properties of tetragonal FeSe0.5Te0.5 superconductor. Physica C 470, 528–532 (2010).

  14. P.K. Maheshwari, B. Gahtori, V.P.S. Awana, Fast suppression of superconductivity with Fe site Ni doping in Fe1-xNixSe0.5Te0.5 single crystals (x = 0.0 to 0.20). J. Sup. Novel Mag. 29, 2473–2478 (2016).

  15. L. Sang, B. Shabbir, P.K. Maheshwari, W. Qiu, Z. Ma, S. Dou, C. Cai, V.P.S. Awana, X. Wang, Hydrostatic pressure-induced huge enhancement of critical current density and flux pinning in Fe1-xCoxSe0.5Te0.5 single crystals. Supercond. Sci. Technol. 31, 025009–025016 (2018).

  16. M.K. Wu, F.C. Hsu, K.W. Yeh, T.W. Huang, J.Y. Luo, M.J. Wang, H.H. Chang, T.K. Chen, S.M. Rao, B.H. Mok, C.L. Chen, Y.L. Huang, C.T. Ke, P.M. Wu, A.M. Chang, C.T. Wu, T.P. Perng, The development of the superconducting PbO-type β-FeSe and related compounds. Physics C. 469, 340–349 (2009)

    Article  CAS  Google Scholar 

  17. Kumar, R.P. Tandon, V.P.S. Awana, Effect of 3d metal (Co and Ni) doping on the superconductivity of FeSe0.5Te0.5. IEEE Trans. Mag. 48, 4239–4242 (2012).

  18. K.W. Yeh, T.W. Huang, Y. Huang, T.K. Chen, F.C. Hsu, P.M. Wu, Y.C. Lee, Y.Y. Chu, C.L. Chen, Y.J. Luo, D.C. Yan, M.K. Wu, Tellurium substitution effect on superconductivity of the α-phase iron selenide. Euro phys. Lett. 84, 37002–37005 (2008).

  19. K. Horigane, H. Hiraka, K. Ohoyama, Relationship between Structure and Superconductivity in FeSe1-xTex. J. Phys. Soc. Japan. 78, 074718–074722 (2009)

    Article  CAS  Google Scholar 

  20. N.C. Gresty, Y. Takabayashi, A.Y. Ganin, M.T. McDonald, J.B. Claridge, D. Giap, Y. Mizuguchi, Y. Takano, T. Kagayama, Y. Ohishi, M. Takata, M.J. Rosseinsky, S. Margadonna, K. Prassides, Structural phase transitions and superconductivity in Fe(1+delta)Se0.57Te0.43 at ambient and elevated pressures. J. Am. Chem. Soc. 131, 16944–16952 (2009).

  21. S. Karmakar, Measurement of improved pressure dependence of superconducting transition temperature. High Pressure Res. 33, 381–391 (2013)

    Article  CAS  Google Scholar 

  22. G. Tsoi, A.K. Stemshorn, Y.K. Vohra, P.M. Wu, F.C. Hsu, Y.L. Huang, M.K. Wu, K.W. Yeh, S.T. Weir: High pressure superconductivity in iron-based layered compounds studied using designer diamonds. J. Phys. Condens. Matter. 21, 232201–232204 (2009).

  23. M. Gooch, B. Lorenz, S.X. Huang, C.L. Chien and C.W. Chu: Pressure effects on strained FeSe0.5Te0.5 thin films. J. Appl. Phys. 111, 112610–112614 (2012).

  24. A.K. Stemshorn, Y.K. Vohra, P.M. Wu, F.C. Hsu, Y.L. Huang, M.K. Wu, K.W. Yeh, Pressure-induced reversible amorphization in superconducting compound FeSe0.5Te0.5. High Pressure Res. 29, 267–271 (2009).

  25. J. Kumar, S. Auluck, P.K. Ahluwalia, V.P.S. Awana, Chalcogen height dependence of magnetism and Fermiology in FeTexSe1-x. Supercond Sci. Technol. 25, 095002–095011 (2012)

    Article  CAS  Google Scholar 

  26. C.Y. Moon, H.J. Choi, Chalcogen-height dependent magnetic interactions and magnetic order switching in FeSexTe1-x. Phys. Rev. Lett. 104, 057003–057012 (2010)

    Article  CAS  Google Scholar 

  27. M. Ciechan, M.S. Winiarski, Czeka: the pressure effects on electronic structure of iron chalcogenide superconductors FeSe(1–x)Te(x). Acta Phys. Pol. A 121, 820–823 (2012)

    Article  CAS  Google Scholar 

  28. T. McQueen, A. Williams, P. Stephens, J. Tao, Y. Zhu, V. Ksenofontov, F. Casper, C. Felser, R. Cava, Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se. Phys. Rev. Lett. 103, 57002–57005 (2009).

  29. S.H. Baek, D.V. Efremov, J.M. Ok, J.S. Kim, J.D. Brink, B. B ̈uchner, Orbital-driven ne-maticity in FeSe. Nat. Mater. 14, 210–214 (2015).

  30. H. Okabe, N. Takeshita, K. Horigane, T. Muranaka, J. Akimitsu, Pressure-induced high-Tc superconducting phase in FeSe: correlation between anion height and Tc. Phys. Rev. B 81, 205119–205124 (2010)

    Article  CAS  Google Scholar 

  31. K. Stemshorn, G. Tsoi, Y.K. Vohra, S. Sinogeiken, P.M. Wu, Y. Huang, S.M. Rao, M.K. Wu, K.W. Yeh, S.T. Weir, Low temperature amorphization and superconductivity in FeSe single crystals at high pressures. J. Mater. Res 25, 396–402 (2010)

    Article  CAS  Google Scholar 

  32. H. Takahashi, T. Tomita, H. Takahashi, Y. Mizuguchi, Y. Takano, S. Nakano, K. Matsubayashi, Y. Uwatoko, High-pressure studies on Tc and crystal structure of iron chalcogenide superconductors. Sci. Technol. Adv. Mater. 13, 054401–054407 (2012)

    Article  CAS  Google Scholar 

  33. R.S. Kumar, Y. Zhang, S. Sinogeikin, Y. Xiao, S. Kumar, P. Chow, L.A. Cornelius, Crystal and electronic structure of FeSe at high pressure and low temperature. J. Phys. Chem. B 114, 12597–12606 (2010)

    Article  CAS  Google Scholar 

  34. D. Braithwaite, B. Salce, G. Lapertot, F. Bourdarot, C. Marin, D. Aoki, M.J. Hanfland, Superconducting and normal phases of FeSe single crystals at high pressure. J. Phys. Condens. Matter. 21, 232202–232206 (2009).

  35. S. I. Shylin, V. Ksenofontov, P.G. Naumov, S.A. Medvedev, V. Tsurkan, J. Deisenhofer, A. Loidl, L.M. Schoop, T. Palasyuk, G. Wortmann, C. Felser, Pressure effect on superconductivity in FeSe0.5Te0.5. Phys. Status Solidi B. 254, 1600161–1600167 (2017).

  36. J.P. Chris, R.J. Needs, Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201–053208 (2011)

    Article  CAS  Google Scholar 

  37. J.H. Xu, A.J. Freeman, Phase stability and electronic structure of ScAl3 and ZrAl3 and of Sc-stabilized cubic ZrAl3 precipitates. Phys. Rev. B 41, 12553–12561 (1990)

    Article  CAS  Google Scholar 

  38. K. Horigane, N. Takeshita, C.H. Lee, H. Hiraka, K. Yamada: First investigation of pressure effects on transition from superconductive to metallic phase in FeSe0.5Te0.5. J. Phys. Soc. Jpn. 78, 063705–063707 (2009).

  39. A.B. Karki, V.O. Garlea, R. Custelcean, S. Stadler, E.W. Plummer, R. Jina, Interplay between superconductivity and magnetism in Fe(1–x)Pd(x)Te. Proc. Natl. Acad. Sci. U.S.A. 110, 9283–9288 (2013)

    Article  CAS  Google Scholar 

  40. P.K. Maheshwari, B. Gahtori, A. Gupta, V.P.S. Awana: Impact of Fe site Co substitution on superconductivity of Fe1-xCoxSe0.5Te0.5 (x = 0.0 to 0.10): A flux free single crystal study. AIP Adv. 7, 015006–015016 (2017).

  41. P.K. Maheshwari, R. Jha, B. Gahtori, V.P.S. Awana: Flux Free growth of large FeSe0.5Te0.5 superconducting single crystals by an easy high temperature melt and slow cooling method. AIP Adv. 5, 097112–097122 (2015).

  42. S. Thrupathiah, J. Fink, P.K. Maheshwari, V.V. Ravikishore, Z.H. Liu, E.D.L. Rienks, V.P.S. Awana, D.D. Sarma: The effect of impurity substitutions on the band structure and the electronic correlation of the strongly correlated FeSe0.5Te0.5 superconductor. Phys. Rev. B. 93, 205143–205149 (2016).

  43. C.L. Huang, C.C. Chou, K.F. Tseng, Y.L. Huang, F.C. Hsu, K.W. Yeh, M.K. Wu, H. Yang, Pressure effects on superconductivity and magnetism in FeSe1-xTex. J. Phys. Soc. Jpn. 78, 084710–084713 (2009)

    Article  CAS  Google Scholar 

  44. R. Jha, Rayees, A. Zargar, A. Hafiz, H. Kishan, V.P.S. Awana: Superconductivity at 25K under hydrostatic pressure for FeTe0.5Se0.5 superconductor. J. Sup. Novel Mag. 27, 897–901 (2014).

  45. P.A. Lee, N. Nagaosa, X.G. Wen, Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006)

    Article  CAS  Google Scholar 

  46. H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, H. Hosono, Superconductivity at 43 K in an iron-based layered compound LaO(1–x)F(x)FeAs. Nature 453, 376–378 (2008)

    Article  CAS  Google Scholar 

  47. G. Kalai Selvan, G. Thakur, K. Manikandan, A. Banerjee, Z. Haque, L.C. Gupta, A.K. Ganguli, S. Arumugam: Superconductivity in La1-xSmxO0.5F0.5BiS2 (x= 0.2, 0.8) under hydrostatic pressure. J. Phys. D 49, 275002–275008 (2016).

  48. V.A. Sidorov, M. Nicklas, P.G. Pagliuso, J.L. Sarrao, Y. Bang, A.V. Balatsky, J.D. Thompson, Superconductivity and quantum criticality in CeCoIn5. Phys. Rev. Lett. 89, 157004–157007 (2002)

    Article  CAS  Google Scholar 

  49. N. Mori, H. Takahashi, N. Takeshita, Low-temperature and high-pressure apparatus developed at ISSP, University of Tokyo. High Press. Res. 24, 225–232 (2004)

    Article  Google Scholar 

  50. S.T. Weir, J. Akella, C.A. Ruddle, Y.K. Vohra, S.A. Catledge, Epitaxial diamond encapsulation of metal microprobes for high pressure experiments. Appl. Phys. Lett. 77, 3400–3402 (2000)

    Article  CAS  Google Scholar 

  51. J.R. Patterson, S.A. Catledge, Y.K. Vohra, J. Akella, S.T. Weir, Electrical and mechanical properties of C70 fullerene and graphite under high pressures studied using designer diamond anvils. Phys. Rev. Lett. 85, 5364–5367 (2000)

    Article  CAS  Google Scholar 

  52. D.D. Jackson, J.R. Jeffries, W. Qiu, G.D. Griffith, S. McCall, C. Aracne, M. Fluss, M.B. Maple, S.T. Weir, Y.K. Vohra, Structure-dependent ferromagnetism in Au4V studied under high pressure. Phys. Rev. B 74, 174401–174408 (2006)

    Article  CAS  Google Scholar 

  53. H.K. Mao, J. Xu, P.M. Bell, Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4678 (1986)

    Article  CAS  Google Scholar 

  54. W.L. Vos, J.A. Schouten, On the temperature correction to the ruby pressure scale. J. Appl. Phys. 69, 6744–6749 (1991)

    Article  Google Scholar 

  55. N. Velisavljevic, Y.K. Vohra, Distortion of alpha-uranium structure in praseodymium metal to 311 GPa. High Pressure Res. 24, 295–302 (2004)

    Article  CAS  Google Scholar 

  56. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–825 (1947)

    Article  CAS  Google Scholar 

  57. C. Prescher, V.B. Prakapenka, DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res. 35, 223–230 (2015)

    Article  CAS  Google Scholar 

  58. B.H. Toby, R.B.V. Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013)

    Article  CAS  Google Scholar 

  59. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  CAS  Google Scholar 

  60. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  CAS  Google Scholar 

  61. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys Rev Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  62. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, 5467–5470 (1995)

    Article  Google Scholar 

  63. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, Z. Szotek, W.M. Temmerman, A.P. Sutton, Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA + U, SIC-LSDA and EELS study of UO2 and NiO. Phys. Status Solidi A 166, 429–43 (1998)

    Article  CAS  Google Scholar 

  64. P. Vinet, J.H. Rose, J. Ferrante, J.R. Smith, Universal features of the equation of state of solids. J. Phys. 1, 1941–1948 (1989)

    CAS  Google Scholar 

  65. S.G. Jung, J.H. Kang, E. Park, S. Lee, J.Y. Lin, D.A. Chareev, A. N. Vasiliev, T. Park, Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor. FeSe. Sci. Rep. 5, 16385–16391 (2015)

    Article  CAS  Google Scholar 

  66. K. Miyoshi, K. Morishita, E. Mutou, M. Kondo, O. Seida, K. Fujiwara, J. Takeuchi, S. Nishigori, Enhanced Superconductivity on the Tetragonal Lattice in FeSe under Hydrostatic Pressure. J. Phys. Soc. Jpn. 83, 013702–013705 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support from the US National Science Foundation (NSF) under Grant No. DMR-1608682. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA’s Office of Experimental Sciences. The Advanced Photon Source is a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. M. Kannan and P.K. Maheshwari would like to thank CSIR for Senior Research Fellowship (SRF) and P.K.M would like to thank AcSIR for pursuing Ph.D Degree. PV acknowledges the Research Council of Norway for providing the computer time (under the Project Number NN2875k) at the Norwegian supercomputer. The author SA wishes to thank DST (SERB, ASEAN, PURSE, FIST), MHRD (RUSA, GIAN), UGC-DAE CSR (Indore), and BRNS (Mumbai) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kalaiselvan Ganesan or S. Arumugam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, K., Lingannan, G., Murugesan, K. et al. Pressure-induced structural transition and huge enhancement of superconducting properties of single-crystal Fe0.99Ni0.01Se0.5Te0.5 unconventional superconductor. Journal of Materials Research 36, 1624–1636 (2021). https://doi.org/10.1557/s43578-021-00110-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00110-y

Keywords

Navigation