Skip to main content

Advertisement

Log in

High-Pressure Effects on the Intermetallic Superconductor Ti0.85Pd0.15

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This work reports superconductivity studies in the intermetallic Ti0.85Pd0.15 performed in normal conditions and under hydrostatic pressure. The crystal structure of the compound has a body-centered cubic at room temperature and atmospheric pressure as unstable β-Ti phase. X-ray diffraction pattern shows space group I\(m\bar {3}m\) with parameter a = 3.2226(4) Å and density around 5.6242 g/cm3. The superconducting transition temperature, TC = 3.7 K was determined from resistance, magnetization, and specific heat measurements. The two critical magnetic fields, the coherence length, Ginzburg–Landau parameter, London penetration depth, the superconducting energy gap, the Debye temperature, the electron-phonon coupling constant and density of states at the Fermi level were calculated. These parameters were obtained at ambient pressure. Under hydrostatic pressure, the magnetic susceptibility measurements show a small increment on TC, the maximum TC = 3.83 K was obtained at the maximum applied pressure of 1.03 GPa. The slope calculated for TC as a linear function of pressure was about 0.14 K/GPa, possibly associated with an increase in the electronic density of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Poon, S.J.: Structural dependence of the superconducting transition temperature in liquid-quenched alloys based on the group IV b elements. Solid State Commun. 47, 431–434 (1983)

    Article  ADS  Google Scholar 

  2. Matthias, B., Compton, V.B., Shul, H., Corenzwit, E.: Ferromagnetis solutes in superconductors. Phys. Rev. 115, 1597–1598 (1959)

    Article  ADS  Google Scholar 

  3. Raub, Ch.J., Compton, V.B., Geballe, T.H., Matthias, B.T., Maita, J.P., Hull, G.: The occurrence of superconductivity in sulfides, selenides, tellurides of Pt-group metals. J. Phys. Chem. Solids 26, 2051–2057 (1965)

    Article  ADS  Google Scholar 

  4. Tiwari, B., Goyal, R., Jha, R., Dixit, A., Awana, V.P.S.: PdTe: a 4.5 K type-II BCS superconductor. Supercond. Sci. Technol. 28, 055008 (2015)

    Article  ADS  Google Scholar 

  5. Amit, S.Y.: Heat capacity evidence for conventional superconductivity in the type-II Dirac semimetal PdTe2. Phys. Rev. B 97, 054515 (2018)

    Article  ADS  Google Scholar 

  6. Jha, R., Goyal, R., Neha, P., Maurya, V.K., Srivastava, A.K., Gupta, A., Patnaik, S., Awana, V.P.S.: Weak ferromagnetism in a noncentrosymmetric BiPd 4 K superconductor. Supercon. Sci. Tehnol. 29, 025008 (2016)

    Article  ADS  Google Scholar 

  7. Zhao, K., Lv, B., Yu-Yi, X., Xi-Yu, Z., Deng, L.Z., Wu, Z., Chu, C.W.: Chemical doping and high-pressure studies of layered β-PdBi2 single crystals. Phys. Rev. B 92, 174404 (2015)

    Article  ADS  Google Scholar 

  8. Pristáš, G., Orendáč, M., Gabáni, S., Kačmarčík, J., Gažo, E., Pribulová, Z., Correa-Orellana, A., Herrera, E., Suderow, H., Samuely, P.: Pressure effect on the superconducting and the normal state of β-Bi2Pd. Phys. Rev. 115, 174404 (2018)

    Google Scholar 

  9. Wong, K.M., Cotts, E.J., Poon, S.J.: Upper critical fields in liquid-quenched metastable superconductors. Phys. Rev. B 30, 1253–1259 (1984)

    Article  ADS  Google Scholar 

  10. Werthamer, N., Helfand, E., Hohenberg, P.C.: Temperature and purity dependence of the superconducting critical field, HC2. III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–302 (1966)

    Article  ADS  Google Scholar 

  11. Maki, K.: The magnetic properties of superconducting alloys II. Phys. 1, 127–143 (1964)

    Article  MathSciNet  Google Scholar 

  12. Maki, K.: Effect of pauli paramagnetism of magnetic properties of high-field superconductors. Phys. Rev. 148, 362–369 (1966)

    Article  ADS  Google Scholar 

  13. Qi-guang, L., Duo, J., Zhi-yi, L., et al.: The research of superconductivity in the Ti-Pd system. Acta Phys. Sin. 32, 534–538 (1983)

    Google Scholar 

  14. Duo, J., Ming-Rong, M, Zhi-yi, L., et al.: Specific heat measurement for Ti-Pd alloys. Acta Phys. Sin. 33, 413–418 (1984)

    Google Scholar 

  15. Toby, B.H., Von Dreele, R.B.: GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 46, 544–549 (2013)

    Article  Google Scholar 

  16. Clark, M.J., Smith, T.F.: Pressure Dependence of TC for lead. J. Low Tempe. Phys. 32, 405–503 (1978)

    Google Scholar 

  17. Martínez-Piñeiro, E., Escudero, R.: Superconducting properties of FeSe0.5Te0.5 under high pressure. J. Supercond. Nov. Magn. 29, 891–896 (2016)

    Article  Google Scholar 

  18. Tari, A.: The Specific Heat of Matter at Low Temperatures. Imperial College Press, London (2003)

    Book  Google Scholar 

  19. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 59–76 (1957)

    Article  MathSciNet  Google Scholar 

  20. McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1967)

    Article  ADS  Google Scholar 

  21. Fickket, F.R.: Standar for measurament of the critical fields of superconductors. J. Res. Natl. Bur. Stand. 90, 95–103 (1985)

    Article  Google Scholar 

  22. Bakonyi, I., Ebert, H., Lichtenstein, A.I.: Electronic structure and magnetic susceptibility of the different structural modifications of Ti, Zr and Hf metals. Phys. Rev. B 48, 7841–7849 (1993)

    Article  ADS  Google Scholar 

  23. Collings, E.W., Ho, J.C., Jaffee, R.I.: Superconducting transition temperature, lattice instability, and electron-to-atom ratio in transition-metal binary solid solution. Phys. Rev. B 5, 4435–4449 (1972)

    Article  ADS  Google Scholar 

  24. Brant, N.B., Ginzburg, N.I.: Effect of high pressure on the superconducting properties of metals. Sov. Phys. Usp. 8, 202–223 (1965)

    Article  ADS  Google Scholar 

  25. Bashkin, I.O., Tissen, V.G., Nefedova, M.V., Ponyatovsky, E.G.: Superconducting temperature of the ω-phase in Ti, Zr and Hf metals at high pressures. Phys. C 453, 12–14 (2007)

    Article  ADS  Google Scholar 

  26. Gyanchandani, J.S., Gupta, S.C., Sikka, S.K., Chidambaram, R.: The equation of state and structural stability of titanium obtained using the linear muffin-tin orbital band-structure method. J. Phys.: Condens. Matter 2, 301–305 (1990)

    ADS  Google Scholar 

  27. Hamlin, J.J.: Superconductivity in the metallic elements at high pressures. Phys. C 514, 59–76 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are thankful to A. Bobadilla for helium provisions, to A. Pompa and A. Lopez for helps in software processes, to DGAPA-UNAM IT100217 and to CONACyT for the scholarship of Carlos Reyes-Damián.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Reyes-Damián.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Damián, C., Morales, F., Martínez-Piñeiro, E. et al. High-Pressure Effects on the Intermetallic Superconductor Ti0.85Pd0.15. J Supercond Nov Magn 33, 2601–2607 (2020). https://doi.org/10.1007/s10948-020-05480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05480-8

Keywords

Navigation