Skip to main content

Advertisement

Log in

Enhanced electrocaloric effect in compositional driven potassium sodium niobate‐based relaxor ferroelectrics

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lead‐free ferroelectric electrocaloric ceramics that could convert electrical energy into heat are the promising candidate for environment‐friendly cooling devices. For refrigeration devices, a large temperature change (ΔT) and good temperature stability are required, which are highly related to the phase structure and the applied electric field. In this work, a diffused ferroelectric–paraelectric (FP) phase transition is formed in (K, Na)NbO3 (KNN) by using appropriate composition engineering. The relaxor ferroelectrics in this work present both a large ΔT of 1.24 K and a high ΔTE of 0.19 K mm/kV. In addition, a wide temperature span exceeds 55 °C at the high electrocaloric effect (ECE) criterion (ΔT ≥ 0.5 K) could also be observed. This work not only opens a new strategy for obtaining high‐performance ceramics for refrigeration devices but also extends the application area of the KNN‐based lead‐free ferroelectrics from sensors, actuators and energy harvesting to solid‐state cooling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. G. Zhang, Z. Chen, B. Fan, J Liu, M. Chen, M. Shen, P. Liu, Y. Zeng, S. Jiang, and Q. Wang: Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot‐pressing. APL Mater. 4, 064103 (2016).

    Google Scholar 

  2. S. Fähler and V.K. Pecharsky: Caloric effects in ferroic materials. MRS Bull. 43, 264 (2018).

    Google Scholar 

  3. J. J. Wang, D. Fortino, B. Wang, X. Zhao, and L.Q. Chen: Extraordinarily large electrocaloric strength of metal‐free perovskites. Adv. Mater. 32, 1906224 (2020).

    CAS  Google Scholar 

  4. X. Moya, S.K. Narayan, and N.D. Mathur: Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439 (2014).

    CAS  Google Scholar 

  5. A. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, and N.D. Mathur: Giant electrocaloric effect in thin‐film PbZr0.95Ti0.05O3. Science 311, 1270 (2006).

    CAS  Google Scholar 

  6. Y. Yu, F. Gao, F. Weyland, H. Du, L. Jin, L. Hou, Z. Yang, N. Novak, and S. Qu: Significantly enhanced room temperature electrocaloric response with superior thermal stability in sodium niobate‐based bulk ceramics. J. Mater. Chem. A 7, 11665 (2019).

    CAS  Google Scholar 

  7. J. Koruza, B. Roži, G. Cordoyiannis, B. Malič, and Z. Kutnjak: Large electrocaloric effect in lead‐free K0.5Na0.5NbO3‐SrTiO3 ceramics. Appl. Phys. Lett. 106, 202905 (2015).

    Google Scholar 

  8. C. Zhao, Y. Huang, and J. Wu: Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat (2020). doi:10.1002/inf2.12147.

    Article  Google Scholar 

  9. R. Zuo and J. Fu: Rhombohedral‐tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3‐LiTaO3‐BaZrO3 lead‐free ceramics. J. Am. Ceram. Soc. 94, 1467 (2011).

    CAS  Google Scholar 

  10. H. Tao, H. Wu, Y. Liu, Y. Zhang, J. Wu, F. Li, X. Lyu, C. Zhao, D. Xiao, J. Zhu, and S.J. Pennycook: Ultrahigh performance in lead‐free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc. 141, 13987 (2019).

    CAS  Google Scholar 

  11. L. Zhao, X. Ke, Z. Zhou, X. Liao, J. Li, Y. Wang, M. Wu, T. Li, Y. Bai, and X. Ren: Large electrocaloric effect over a wide temperature range in BaTiO3‐modified lead‐free ceramics. J. Mater. Chem. C 7, 1353 (2019).

    CAS  Google Scholar 

  12. X. Wang, J. Wu, B. Dkhil, B. Xu, X. Wang, G. Dong, G. Yang, and X. Lou: Enhanced electrocaloric effect near polymorphic phase boundary in lead‐free potassium sodium niobate ceramics. Appl. Phys. Lett. 110, 063904 (2017).

    Google Scholar 

  13. R. Kumar and S. Singh: Enhanced electrocaloric response and high energy‐storage properties in lead‐free (1‐x)(K0.5Na0.5)NbO3‐xSrZrO3 nanocrystalline ceramics. J. Alloys Compd. 764, 289 (2018).

    CAS  Google Scholar 

  14. J. Yang, Y. Zhao, X. Lou, J. Wu, and X. Hao: Synergistically optimizing electrocaloric effects and temperature span in KNN‐based ceramics utilizing a relaxor multiphase boundary. J. Mater. Chem. C 8, 4030 (2020).

    CAS  Google Scholar 

  15. J. Wu, D. Xiao, and J. Zhu: Potassium‐sodium niobate lead‐free piezoelectric materials: Past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015).

    CAS  Google Scholar 

  16. Y. Li, Y. Zhen, W. Wang, Z. Fang, Z. Jia, J. Zhang, H. Zhong, J. Wu, Y. Yan, Q. Xue, and F. Zhu: Enhanced energy storage density and discharge efficiency in potassium sodium niobite‐based ceramics prepared using a new scheme. J. Eur. Ceram. Soc. 40, 2357 (2020).

    CAS  Google Scholar 

  17. X. Lv and J. Wu: Effects of a phase engineering strategy on the strain properties in KNN‐based ceramics. J. Mater. Chem. C 7, 2037 (2019).

    CAS  Google Scholar 

  18. B. Wu, C. Zhao, Y. Huang, J. Yin, W. Wu, and J. Wu: Superior electrostrictive effect in relaxor potassium sodium niobate based ferroelectrics. ACS Appl. Mater. Interfaces 12, 25050 (2020).

    CAS  Google Scholar 

  19. X. Li, S.G. Lu, X.Z. Chen, H. Gu, X. Qian, and Q.M. Zhang: Pyroelectric and electrocaloric materials. J. Mater. Chem. C 1, 23 (2013).

    CAS  Google Scholar 

  20. G. Vats, A. Kumar, N. Ortega, C.R. Bowen, and R.S. Katiyar: Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures. Energ. Environ. Sci. 9, 1335 (2016).

    CAS  Google Scholar 

  21. M. Guo, M. Wu, W. Gao, B. Sun, and X. Lou: Giant negative electrocaloric effect in antiferroelectric PbZrO3 thin films in an ultra‐low temperature range. J. Mater. Chem. C 7, 617 (2019).

    CAS  Google Scholar 

  22. M. Valant: Electrocaloric materials for future solid‐state refrigeration technologies. Prog. Mater. Sci. 57, 980 (2012).

    CAS  Google Scholar 

  23. C. Zhao, J. Yang, Y. Huang, X. Hao, and J. Wu: Broad‐temperature‐span and large electrocaloric effect in lead‐free ceramics utilizing successive and metastable phase transitions. J. Mater. Chem. A 7, 25526 (2019).

    CAS  Google Scholar 

  24. E. Li, H. Kakemoto, S. Wada, and T. Tsurumi: Influence of CuO on the structure and piezoelectric properties of the alkaline niobate‐based lead‐free ceramics. J. Am. Ceram. Soc. 90, 1787 (2007).

    CAS  Google Scholar 

  25. J.B. Lim, S. Zhang, J.H. Jeon, and T.R. Shrout: (K,Na)NbO3‐based ceramics for piezoelectric “hard” lead‐free materials. J. Am. Ceram. Soc. 93, 1218 (2010).

    CAS  Google Scholar 

  26. H.Y. Park, J.Y. Choi, M.K. Choi, K.H. Cho, S. Nahm, H.G. Lee, and H.W. Kang: Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead‐free piezoelectric ceramics. J. Am. Ceram. Soc. 91, 2374 (2008).

    CAS  Google Scholar 

  27. Y. Chang, S.F. Poterala, Z. Yang, S.T. McKinstry, and G.L. Messing: Microstructure development and piezoelectric properties of highly textured CuO‐doped KNN by templated grain growth. J. Mater. Res. 25, 687 (2011).

    Google Scholar 

  28. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1976).

    CAS  Google Scholar 

  29. X. Lv, J. Zhu, D. Xiao, X. Zhang, and J. Wu: Emerging new phase boundary in potassium sodium‐niobate based ceramics. Chem. Soc. Rev. 49, 671 (2020).

    CAS  Google Scholar 

  30. Y. Huang, C. Zhao, J. Yin, X. Lv, J. Ma, and J. Wu: Giant electrostrictive effect in lead‐free barium titanate‐based ceramics via A‐site ion‐pairs engineering. J. Mater. Chem. A 7, 17366 (2019).

    CAS  Google Scholar 

  31. J. Xing, S. Xie, B. Wu, Z. Tan, L. Jiang, L. Xie, Y. Cheng, J. Wu, D. Xiao, and J. Zhu: Influence of different lanthanide ions on the structure and properties of potassium sodium niobate based ceramics. Scr. Mater. 177, 186 (2020).

    CAS  Google Scholar 

  32. X. Ren, Z. Peng, B. Chen, Q. Shi, X. Qiao, D. Wu, G. Li, L. Jin, Z. Yang, and X. Chao: A compromise between piezoelectricity and transparency in KNN‐based ceramics: The dual functions of Li2O addition. J. Eur. Ceram. Soc. 40, 2331 (2020).

    CAS  Google Scholar 

  33. F. Huang, H. Tian, X. Meng, P. Tan, X. Cao, Y. Bai, C. Hu, and Z. Zhou: Large room temperature electrocaloric effect in KTa1‐xNbxO3 single crystal. Phys. Status Solidi RRL 13, 1800515 (2019).

    Google Scholar 

  34. J. Li, Y. Bai, S. Qin, J. Fu, R. Zuo, and L. Qiao: Direct and indirect characterization of electrocaloric effect in (Na,K)NbO3 based lead‐free ceramics. Appl. Phys. Lett. 109, 162902 (2016).

    Google Scholar 

  35. L. Zhang, C. Zhao, T. Zheng, and J. Wu: Large electrocaloric effect in (Bi0.5Na0.5)TiO3‐based relaxor ferroelectrics. ACS Appl. Mater. Interfaces 12, 33934 (2020).

    CAS  Google Scholar 

  36. F.L. Goupil, A.K. Axelsson, L.J. Dunne, M. Valant, G. Manos, T. Lukasiewicz, J. Dec, A. Berenov, and N.M. Alford: Anisotropy of the electrocaloric effect in lead‐free relaxor ferroelectrics. Adv. Energ. Mater. 4, 1301688 (2014).

    Google Scholar 

  37. M. Sanlialp, V.V. Shvartsman, M. Acosta, B. Dkhil, and D.C. Lupascu: Strong electrocaloric effect in lead‐free 0.65Ba(Zr0.2Ti0.8)O3‐0.35(Ba0.7Ca0.3)TiO3 ceramics obtained by direct measurements. Appl. Phys. Lett. 106, 062901 (2015).

    Google Scholar 

  38. R. Kumar, A. Kumar, and S. Singh: Large electrocaloric response and energy storage study in environmentally friendly (1‐x)K0.5Na0.5NbO3‐xLaNbO3 nanocrystalline ceramics. Sustain. Energ. Fuels 2, 2698 (2018).

    CAS  Google Scholar 

  39. R. Kumar, A. Kumar, and S. Singh: Coexistence of large negative and positive electrocaloric effects and energy storage performance in LiNbO3 doped K0.5Na0.5NbO3 nanocrystalline ceramics. ACS App. Electron. Mater. 1, 454 (2019).

    CAS  Google Scholar 

  40. S. Kumar and S. Singh: Study of electrocaloric effect in lead‐free 0.9K0.5Na0.5NbO3‐0.1CaZrO3 solid solution ceramics. J. Mater. Sci.: Mater. Electron. 30, 12924 (2019).

    CAS  Google Scholar 

  41. J. Yang and X. Hao: Electrocaloric effect and pyroelectric performance in (K,Na)NbO3‐based lead‐free ceramics. J. Am. Ceram. Soc. 102, 6817 (2019).

    CAS  Google Scholar 

  42. S.M. Pilgrim, A.E. Sutherland, and S.R. Winzer: Diffuseness as a useful parameter for relaxor ceramics. J. Am. Ceram. Soc. 73, 3122 (1990).

    CAS  Google Scholar 

  43. Y. Huang, C. Zhao, B. Wu, and J. Wu: Multifunctional BaTiO3‐based relaxor ferroelectrics toward excellent energy storage performance and electrostrictive strain benefiting from crossover region. ACS Appl. Mater. Interfaces 12, 23885 (2020).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the supports of the National Science Foundation of China (NSFC No. 51722208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiagang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zheng, T., Zhao, C. et al. Enhanced electrocaloric effect in compositional driven potassium sodium niobate‐based relaxor ferroelectrics. Journal of Materials Research 36, 1142–1152 (2021). https://doi.org/10.1557/s43578-020-00081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00081-6

Keywords

Navigation