Skip to main content

Advertisement

Log in

Enhanced electrocaloric effect in lead-free ferroelectric potassium–sodium niobate ceramics benefiting from phase boundary design

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrocaloric effect (ECE) refrigeration is environment-friendly and is of high efficiency for replacing traditional compression refrigeration. Herein, 0.98(K0.48Na0.535)(1−x)Lix(Nb0.99Sb0.01) O3–0.02BaZrO3 (xLi) ceramics are fabricated by a solid-state method, and the microstructure, dielectric properties, and ECE are investigated in detail. A large ECE is achieved in xLi ceramics near ambient temperature benefiting from phase boundary design by appropriate composition engineering. An indirect adiabatic temperature change (ΔT) of xLi ceramics with x = 0.03, 0.05, and 0.07 are 0.26 K, 0.29 K, and 0.36 K under an electric field of 60 kV cm–1, respectively. A direct ΔT of 0.226 K is obtained at 70 °C under 50 kV cm−1 in 0.07Li ceramic. In addition, the temperature span (Tspan) is up to 50 K in 0.07Li ceramic due to broad orthorhombic–tetragonal phase transition peak. This work not only provides an effective way to develop an excellent performance electrocaloric material but also expands the application area of potassium–sodium niobate ceramics in solid-state refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Guo, M. Wu, W. Gao, B. Sun, X. Lou, Giant negative electrocaloric effect in antiferroelectric PbZrO3 thin films in an ultra-low temperature range. J. Mater. Chem. C. 7(3), 617–621 (2019)

    Article  CAS  Google Scholar 

  2. F. Zhuo, Q. Li, H. Qiao, Q. Yan, Y. Zhang, X. Xi, X. Chu, X. Long, W. Cao, Field-induced phase transitions and enhanced double negative electrocaloric effects in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric single crystal. Appl. Phys. Lett. 112(13), 133901 (2018)

    Article  Google Scholar 

  3. N. Zhang, T. Zheng, C. Zhao, X. Wei, J. Wu, Enhanced electrocaloric effect in compositional driven potassium sodium niobate-based relaxor ferroelectrics. J. Mater. Res. 36(5), 1142–1152 (2021)

    Article  CAS  Google Scholar 

  4. J. Yang, Y. Zhao, L. Zhu, X. Hao, Enhanced electrocaloric effect of relaxor potassium sodium niobate lead-free ceramic via multilayer structure. Scripta Mater. 193, 97–102 (2021)

    Article  CAS  Google Scholar 

  5. L. Zhu, X. Meng, J. Zhu, Y. Zhao, Y. Li, X. Hao, Enhanced room temperature electrocaloric effect in lead-free relaxor ferroelectric NBT ceramics with excellent temperature stability. J. Alloy. Compd. 892, 162241 (2022)

    Article  CAS  Google Scholar 

  6. G.G. Wiseman, J.K. Kuebler, Electrocaloric effect in ferroelectric rochelle salt. Phys. Rev. 131(5), 2023–2027 (1963)

    Article  CAS  Google Scholar 

  7. J.G. Bednorz, K.A. Müller, Sr1−xCaxTiO3: AnXYQuantum ferroelectric with transition to Randomness. Phys. Rev. Lett. 52(25), 2289–2292 (1984)

    Article  CAS  Google Scholar 

  8. E. Birks, L. Shebanov, A. Sternberg, Electrocaloric effect in PLZT ceramics. Ferroelectrics 69(1), 125–129 (1986)

    Article  CAS  Google Scholar 

  9. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Giant electrocaloric effect in thin-film PbZr(0.95)Ti(0.05)O3. Science 311(5765), 1270–1271 (2006)

    Article  CAS  Google Scholar 

  10. C.M. Guvenc, U. Adem, Influence of aging on electrocaloric effect in Li+ doped BaTiO3 ceramics. J. Alloy. Compd. 791, 674–680 (2019)

    Article  CAS  Google Scholar 

  11. R. Yin, J. Li, X. Su, S. Qin, C. Yu, Y. Hou, C. Liu, Y. Su, L. Qiao, T. Lookman, Y. Bai, Emergent enhanced electrocaloric effect within wide temperature span in laminated composite ceramics. Adv. Func. Mater. 32(5), 2108182 (2021)

    Article  Google Scholar 

  12. F. Li, J. Li, J. Zhai, B. Shen, S. Li, M. Zhou, K. Zhao, H. Zeng, Influence of structural evolution on electrocaloric effect in Bi0.5Na0.5TiO3-SrTiO3 ferroelectric ceramics. J. Appl. Physics. 124(16), 164108 (2018)

    Article  Google Scholar 

  13. G. Li, J. Li, F. Li, Y. Li, X. Liu, T. Jiang, F. Yan, X. He, B. Shen, J. Zhai, Electrocaloric effect in BNT-based lead-free ceramics by local-structure and phase-boundary evolution. J. Alloy. Compd. 817, 152794 (2020)

    Article  CAS  Google Scholar 

  14. X. Wang, J. Wu, B. Dkhil, B. Xu, X. Wang, G. Dong, G. Yang, X. Lou, Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl. Phys. Lett. 110(6), 063904 (2017)

    Article  Google Scholar 

  15. B. Zhang, J. Wu, X. Wang, X. Cheng, J. Zhu, D. Xiao, Rhombohedral–orthorhombic phase coexistence and electrical properties of Ta and BaZrO3 co-modified (K, Na)NbO3 lead-free ceramics. Curr. Appl. Phys. 13(8), 1647–1650 (2013)

    Article  Google Scholar 

  16. C. Zhao, J. Yang, Y. Huang, X. Hao, J. Wu, Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions. J. Mater. Chem. A. 7(44), 25526–25536 (2019)

    Article  CAS  Google Scholar 

  17. L. Zhang, C. Zhao, T. Zheng, J. Wu, Large electrocaloric effect in (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics. ACS Appl Mater Interfaces. 12(30), 33934–33940 (2020)

    Article  CAS  Google Scholar 

  18. X. Wei, C. Zhao, T. Zheng, X. Lv, L. Zhang, B. Li, J. Wu, Understanding the enhanced electrocaloric effect in BaTiO3-based ferroelectrics at critical state. Acta Mater. 227, 117735 (2022)

    Article  CAS  Google Scholar 

  19. Y. Zhao, J. Du, J. Yang, L. Zhu, Y. Wang, Y. Li, X. Hao, Large Room-Temperature Electrocaloric Response Realized in Potassium-Sodium Niobate by a Relaxor Enhancement Effect and Multilayer Ceramic Construct. ACS Appl Mater Interfaces. 14(9), 11626–11635 (2022)

    Article  CAS  Google Scholar 

  20. R. Gaur, N. Sharma, S. Kharbanda, S. Singh, Enhanced ferroelectric and electrocaloric properties in CuO-modified lead-free (Na0.5K0.5)NbO3 ceramics for solid-state cooling application. Mater. Sci. Eng: B. 261, 114767 (2020)

    Article  CAS  Google Scholar 

  21. A. Gupta, R. Kumar, S. Singh, Coexistence of negative and positive electrocaloric effect in lead-free 0.9(K0.5Na0.5)NbO3-0.1SrTiO3 nanocrystalline ceramics. Scripta Mater. 143, 5–9 (2018)

    Article  CAS  Google Scholar 

  22. M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, J. Holc, New lead-free relaxors based on the solid K0.5Na0.5NbO3-SrTiO3 solution. J. Mater. Res. 19(6), 1849–1854 (2011)

    Article  Google Scholar 

  23. R. Kumar, D. Khurana, A. kumar, S. Singh, Giant negative electrocaloric effect and energy storage response in 0.94(K0.5Na0.5)NbO3-0.06SrMnO3 nanocrystalline ceramics. Cerami. Int. 44(17), 20845–20850 (2018)

    Article  CAS  Google Scholar 

  24. J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, Z. Kutnjak, Large electrocaloric effect in lead-freec K0.5Na0.5NbO3-SrTiO3ceramics. Appl. Phys. Lett. 106(20), 202905 (2015)

    Article  Google Scholar 

  25. J. Yang, Y. Zhao, X. Lou, J. Wu, X. Hao, Synergistically optimizing electrocaloric effects and temperature span in KNN-based ceramics utilizing a relaxor multiphase boundary. J. Mater. Chem. C. 8(12), 4030–4039 (2020)

    Article  CAS  Google Scholar 

  26. M. Aissa, M. Zannen, M. Benyoussef, J. Belhadi, M. Spreitzer, Z. Kutnjak, M. El Marssi, A. Lahmar, Large direct and inverse electrocaloric effects in lead-free Dy doped 0.975KNN-0.025NBT ceramics. Ceram. Int. 47(22), 31286–31293 (2021)

    Article  CAS  Google Scholar 

  27. Q. Liu, J.-F. Li, L. Zhao, Y. Zhang, J. Gao, W. Sun, K. Wang, L. Li, Niobate-based lead-free piezoceramics: a diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients. J. Mater. Chem. C. 6(5), 1116–1125 (2018)

    Article  CAS  Google Scholar 

  28. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87(18), 182905 (2005)

    Article  Google Scholar 

  29. G. Li, F. Yan, K. Zhu, C. Shi, G. Ge, J. Lin, Y. Shi, B. Shen, J. Zhai, Intelligent self-actuating lead-free cooling ceramics based on A-site defect engineering. Acta Mater. 227, 117750 (2022)

    Article  CAS  Google Scholar 

  30. M. Zannen, A. Lahmar, Z. Kutnjak, J. Belhadi, H. Khemakhem, M. El Marssi, Electrocaloric effect and energy storage in lead free Gd0.02Na0.5Bi0.48TiO3 ceramic. Solid State Sci. 66, 31–37 (2017)

    Article  CAS  Google Scholar 

  31. W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 36(3), 593–600 (2016)

    Article  CAS  Google Scholar 

  32. W.P. Cao, W.L. Li, T.R.G.L. Bai, Y. Yu, T.D. Zhang, Y.F. Hou, Y. Feng, W.D. Fei, Enhanced electrical properties in lead-free NBT-BT ceramics by series ST substitution. Ceram. Int. 42(7), 8438–8444 (2016)

    Article  CAS  Google Scholar 

  33. S. Belkhadir, A. Neqali, M. Amjoud, D. Mezzane, A. Alimoussa, E. Choukri, Y. Gagou, I. Raevski, M. El Marssi, I.A. Luk’yanchuk, B. Rožič, Z. Kutnjak, Structural, dielectric and electrocaloric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1-xSnx)O3 ceramics elaborated by sol-gel method. J. Mater. Sci: Mater. Electr. 30(15), 14099–14111 (2019)

    CAS  Google Scholar 

  34. Y. Bai, G.-P. Zheng, S.-Q. Shi, Abnormal electrocaloric effect of Na0.5Bi0.5TiO3-BaTiO3 lead-free ferroelectric ceramics above room temperature. Mater. Res. Bulletin. 46(11), 1866–1869 (2011)

    Article  CAS  Google Scholar 

  35. X. Yan, M. Zhu, Q. Wei, S.-G. Lu, M. Zheng, Y. Hou, Large electrocaloric effect in tetragonal perovskite 0.03Bi (Mg1/2Ti1/2)O3-0.97(0.875Bi1/2Na1/2TiO3-0.125BaTiO3) lead-free ferroelectric ceramics. Scripta Mater. 162, 256–260 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 52102136), the Doctoral Program for Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. 2020BS05005), the Major Program for Science and Technology of Inner Mongolia Autonomous Region (Grant No. 2019ZD12), and the Support Program for “Grassland Talents” Innovation Team of Inner Mongolia (Rare Earth Modified Lead-free Ferroelectric Multilayer Ceramic Capacitors Innovative Talent Team).

Funding

The National Natural Science Foundation of China, No. 52102136, Ye Zhao, the Doctoral Program for Natural Science Foundation of Inner Mongolia Autonomous Region,No. 2020BS05005,Ye Zhao, the Major Program for Science and Technology of Inner Mongolia Autonomous Region, No. 2019ZD12, Xihong Hao, and the Support Program for “Grassland Talents” Innovation Team of Inner Mongolia, Xihong Hao.

Author information

Authors and Affiliations

Authors

Contributions

YW performed the experiment and manuscript preparation. YZ contributed significantly to analysis and manuscript preparation. LZ performed the experiment. YL and XH helped perform the analysis with constructive discussions.

Corresponding authors

Correspondence to Ye Zhao or Xihong Hao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhu, L., Zhao, Y. et al. Enhanced electrocaloric effect in lead-free ferroelectric potassium–sodium niobate ceramics benefiting from phase boundary design. J Mater Sci: Mater Electron 33, 17322–17330 (2022). https://doi.org/10.1007/s10854-022-08609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08609-8

Navigation