Skip to main content
Log in

Lattice mismatch and twist partitioning at commensurate dichromatic pattern of two-phase interfaces

  • Article
  • Focus Issue: Multiscale Materials Modeling of Interface-mediated Thermomechanical Behavior
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Misfit dislocations are formed at a two-phase interface to reduce and even diminish coherency stress in the region far from the interface. Such semi-coherent interfaces are key structural features in a wide range of engineering materials. Burgers vectors of misfit dislocations are defined with the reference lattice named as commensurate dichromatic pattern (CDP) in the topological model. The CDP is not a geometrical average of boundary units as historically used in many examples. In this work, based on the Green’s function and theory of dislocations, both the mechanical effects of interfacial dislocation arrays and coherency strains due to geometry match at the interface are considered to get the CDP. We demonstrated that the mismatch and twist partitioning at a CDP are unequally partitioned in the two adjacent crystals, which only depends on elastic properties of the two crystals regardless of characters of misfit dislocations. Correspondingly, the method to determine the CDP of a two-phase interface in bi-crystal is developed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J.M. Howe, R.C. Pond, J.P. Hirth, The role of disconnections in phase transformations. Prog. Mater. Sci. 54, 792 (2009)

    Article  CAS  Google Scholar 

  2. F.C. Frank, Report of the Symposium on the Plastic Deformation of Crystalline Solids (Carnegie Institute of Technology, Pittsburgh, PA, 1950), p. 150

    Google Scholar 

  3. B.A. Bilby, Report of the Conference Defects in Crystalline Solids (Physical Society, London, 1955), p. 124

    Google Scholar 

  4. W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1970).

    Book  Google Scholar 

  5. R.C. Pond, J.P. Hirth, Defects at surfaces and interfaces. Solid State Phys. 47, 287 (1994)

    Article  CAS  Google Scholar 

  6. R.C. Pond, W. Bollmann, The symmetry and interfacial structure of bicrystals. Philos. Trans. R. Soc. A 292, 449 (1979)

    CAS  Google Scholar 

  7. H.J. Chu, E. Pan, Elastic fields due to dislocation arrays in anisotropic bimaterials. Int. J. Solids Struct. 51, 1954 (2014)

    Article  CAS  Google Scholar 

  8. Y.H. Zhang, Y.H. Xu, H.J. Chu, Size effect of layer thickness on stress fields due to interface core-spreading dislocation arrays in multilayers. Sci. China Technol. Sci. 63, 277 (2020)

    Article  CAS  Google Scholar 

  9. J. Wang, J.P. Hirth, R.C. Pond, J.M. Howe, Rotational partitioning at two-phase interfaces. Acta Mater. 59, 241 (2011)

    Article  CAS  Google Scholar 

  10. J. Wang, R.F. Zhang, C.Z. Zhou, I.J. Beyerlein, A. Misra, Characterizing interface dislocations by atomically informed Frank-Bilby theory. J. Mater. Res. 28, 1646 (2013)

    Article  CAS  Google Scholar 

  11. C.Z. Zhou, A. Misra, R.F. Zhang, I.J. Beyerlein, J. Wang, Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int. J. Plast. 53, 40 (2014)

    Article  Google Scholar 

  12. T.C.T. Ting, Anisotropic elasticity: theory and applications. J. Appl. Mech. 63, 1056 (1996)

    Article  Google Scholar 

  13. A.N. Stroh, Dislocations and cracks in anisotropic elasticity. Philos. Mag. 3, 625 (1958)

    Article  CAS  Google Scholar 

  14. A.N. Stroh, Steady state problems in anisotropic elasticity. J. Math. Phys. 41, 77 (1962)

    Article  Google Scholar 

  15. A.H. Cottrell, D.L. Dexter, Dislocations and plastic flow in crystals. Am. J. Phys. 22, 242 (1954)

    Article  Google Scholar 

  16. J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Willey, New York, 1982).

    Google Scholar 

  17. S. Shao, J. Wang, A. Misra, R.G. Hoagland, Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces. Sci. Rep. 3, 2448 (2013)

    Article  Google Scholar 

  18. S. Shao, J. Wang, A. Misra, Energy minimization mechanisms of semi-coherent interfaces. J. Appl. Phys. 116, 023508 (2014)

    Article  Google Scholar 

  19. S. Shao, F. Akasheh, J. Wang, Y. Liu, Alternative misfit dislocations pattern in semi-coherent FCC 100 interfaces. Acta Mater. 144, 177 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like acknowledge the support by the National Natural Science Foundation of China (Grant No. 11872237), Natural Science Foundation of Shanghai (Grant No. 18ZR1414600) and the Challenging Project from CAEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijian Chu.

Appendix: methodology for the strains due to interfacial dislocation arrays

Appendix: methodology for the strains due to interfacial dislocation arrays

For a bi-crystal with different elastic constants in two constitutes, the elastic fields associated with a dislocation array in the interface can be obtained by using the interfacial Green’s function [12] based on Stroh formalism [12,13,14]. Referring to the geometry in Fig. 1a, the displacement field due to a single dislocation with Burgers’ vector b at (x = X, z = 0) can be expressed as:

$${\mathbf{u}}_{i}^{\lambda } = \frac{1}{\pi }{\text{Im}} \left\{ {{\mathbf{A}}_{\lambda } \left\langle {\frac{1}{{z_{*}^{\lambda } - X}}\frac{{\partial z_{*}^{\lambda } }}{{\partial x_{i} }}} \right\rangle {\mathbf{q}}_{\lambda } } \right\}$$
(9)

with

$${\varvec{q}}_{1} = {\varvec{A}}_{1}^{ - 1} \left( {{\varvec{M}}_{1} + \overline{{\varvec{M}}}_{2} } \right)^{ - 1} \overline{{\varvec{M}}}_{2} {\varvec{b}}$$
$${\varvec{q}}_{2} = {\varvec{A}}_{2}^{ - 1} \left( {\overline{{\varvec{M}}}_{1} + {\varvec{M}}_{2} } \right)^{ - 1} \overline{{\varvec{M}}}_{1} {\varvec{b}}$$
$${\varvec{M}}_{1} = - i{\varvec{B}}_{1} {\varvec{A}}_{1}^{ - 1} ,\;{\varvec{M}}_{2} = - i{\varvec{B}}_{2} {\varvec{A}}_{2}^{ - 1}$$
$$\left\langle {f(x_{*} )} \right\rangle = {\text{diag}}\left[ {f(x_{1} ),f(x_{2} ),f(x_{3} )} \right]$$
$$z_{j}^{\lambda } = x + p_{j}^{\lambda } z\, \left( {j = {1},{ 2},{ 3}} \right)$$

where λ = 1, 2 represent the upper half-space material and the lower one, respectively. \(p_{j}^{\lambda }\) , Aλ and Bλ denote the Stroh eigenvalues and the corresponding eigenmatrices for the material λ. Im{f} stands for the imaginary part of the variable or function f. According to Cottrell formula [15, 16], the elastic fields induced by dislocation array can be obtained through summing Eq. (9) over all the dislocations. The derivative of the displacements can be shown as [7, 8]

$${\mathbf{u}}_{i}^{\lambda } = \frac{1}{L}{\text{Im}} \left\{ {{\mathbf{A}}_{\lambda } \left\langle {\cot \left( {\frac{{z_{*}^{\lambda } - X}}{L}} \right)\left( {\delta_{i1} + p_{*}^{\lambda } \delta_{i3} } \right)} \right\rangle {\mathbf{q}}_{\lambda } } \right\}$$
(10)

where L is the period spacing of the dislocation array.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, Y. & Chu, H. Lattice mismatch and twist partitioning at commensurate dichromatic pattern of two-phase interfaces. Journal of Materials Research 36, 2623–2629 (2021). https://doi.org/10.1557/s43578-020-00031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00031-2

Keywords

Navigation