Skip to main content

Advertisement

Log in

Anti-caries nanostructured dental adhesive reduces biofilm pathogenicity and raises biofilm pH to protect tooth structures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The objectives were to: (1) develop a new nanostructured dental adhesive with antibiofilm and remineralization properties using dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of calcium fluoride (nCaF2); (2) investigate the effects on dentin bond strength and Streptococcus mutans biofilms. Bisphenol A glycidyl dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate, and methacryloyloxy ethyl phthalate formed the adhesive. Biofilm colony-forming units (CFU), metabolic activities, biomass, and acid-production were measured. Adding nCaF2 and DMAHDM into adhesive did not compromise the dentin bond strength (p > 0.1). The nCaF2 + DMAHDM-containing adhesive decreased biofilm CFU by 4 logs, with tenfold reduction in acid-production, compared to control (p < 0.05). The nCaF2 + DMAHDM-containing adhesive successfully shifted the acidic and cariogenic biofilm pH 4 to a safe pH of 7. In conclusion, a novel bioactive adhesive mitigated the cariogenic potential of S. mutans biofilm and raised biofilm pH to a safe level to protect tooth structures, without compromising dentin bond strength.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. C.D. Lynch, K.B. Frazier, R.J. McConnell, I.R. Blum, N.H. Wilson, Minimally invasive management of dental caries: contemporary teaching of posterior resin-based composite placement in U.S. and Canadian dental schools. J. Am. Dent. Assoc. 142, 612 (2011)

    Article  Google Scholar 

  2. C.D. Lynch, N.J. Opdam, R. Hickel, P.A. Brunton, S. Gurgan, A. Kakaboura, A.C. Shearer, G. Vanherle, N.H. Wilson, Guidance on posterior resin composites: Academy of Operative Dentistry-European Section. J. Dent. 42, 377 (2014)

    Article  Google Scholar 

  3. D. Eltahlah, C.D. Lynch, B.L. Chadwick, I.R. Blum, N.H.F. Wilson, An update on the reasons for placement and replacement of direct restorations. J. Dent. 72, 1 (2018)

    Article  Google Scholar 

  4. N. Beyth, A.J. Domb, E.I. Weiss, An in vitro quantitative antibacterial analysis of amalgam and composite resins. J. Dent. 35, 201 (2007)

    Article  CAS  Google Scholar 

  5. N. Zhang, M.A.S. Melo, M.D. Weir, M.A. Reynolds, Y. Bai, H.H.K. Xu, Do dental resin composites accumulate more oral biofilms and plaque than amalgam and glass ionomer materials? Materials 9, 888 (2016)

    Article  CAS  Google Scholar 

  6. P. Spencer, Q. Ye, J. Park, E.M. Topp, A. Misra, O. Marangos, Y. Wang, B.S. Bohaty, V. Singh, F. Sene, J. Eslick, K. Camarda, J.L. Katz, Adhesive/dentin interface: the weak link in the composite restoration. Ann. Biomed. Eng. 38, 1989 (2010)

    Article  Google Scholar 

  7. S.H. Dickens, G.M. Flaim, S. Takagi, Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO4 cements. Dent. Mater. 19, 558 (2003)

    Article  CAS  Google Scholar 

  8. L. Sun, L.C. Chow, Preparation and properties of nano-sized calcium fluoride for dental applications. Dent. Mater. 24, 111 (2008)

    Article  CAS  Google Scholar 

  9. H.H. Xu, J.L. Moreau, L. Sun, L.C. Chow, Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials 29, 4261 (2008)

    Article  CAS  Google Scholar 

  10. H.H. Xu, J.L. Moreau, L. Sun, L.C. Chow, Novel CaF(2) nanocomposite with high strength and fluoride ion release. J. Dent. Res. 89, 739 (2010)

    Article  CAS  Google Scholar 

  11. D.M. Deng, C. van Loveren, J.M. ten Cate, Caries-preventive agents induce remineralization of dentin in a biofilm model. Caries Res. 39, 216 (2005)

    Article  CAS  Google Scholar 

  12. J.D. Featherstone, The continuum of dental caries—evidence for a dynamic disease process. J. Dent. Res. 83(Spec No C), C39 (2004)

    Article  Google Scholar 

  13. J.D. Featherstone, R. Glena, M. Shariati, C.P. Shields, Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration. J. Dent. Res. 69, 620 (1990)

    Article  CAS  Google Scholar 

  14. J.M. Ten Cate, In vitro studies on the effects of fluoride on de- and remineralization. J. Dent. Res. 69, 614 (1990)

    Article  CAS  Google Scholar 

  15. H.B. Davis, F. Gwinner, J.C. Mitchell, J.L. Ferracane, Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass. Dent. Mater. 30, 1187 (2014)

    Article  CAS  Google Scholar 

  16. A.M. Kielbassa, J. Schulte-Monting, F. Garcia-Godoy, H. Meyer-Lueckel, Initial in situ secondary caries formation: effect of various fluoride-containing restorative materials. Oper Dent. 28, 765 (2003)

    CAS  Google Scholar 

  17. L. Ling, X. Xu, G.Y. Choi, D. Billodeaux, G. Guo, R.M. Diwan, Novel F-releasing composite with improved mechanical properties. J. Dent. Res. 88, 83 (2009)

    Article  CAS  Google Scholar 

  18. S. Imazato, Antibacterial properties of resin composites and dentin bonding systems. Dent. Mater. 19, 449 (2003)

    Article  CAS  Google Scholar 

  19. H. Koo, Strategies to enhance the biological effects of fluoride on dental biofilms. Adv. Dent Res. 20, 17 (2008)

    Article  CAS  Google Scholar 

  20. J.M. ten Cate, The need for antibacterial approaches to improve caries control. Adv. Dent Res. 21, 8 (2009)

    Article  Google Scholar 

  21. X. Zheng, X. Cheng, L. Wang, W. Qiu, S. Wang, Y. Zhou, M. Li, Y. Li, L. Cheng, J. Li, X. Zhou, X. Xu, Combinatorial effects of arginine and fluoride on oral bacteria. J. Dent. Res. 94, 344 (2015)

    Article  CAS  Google Scholar 

  22. B. Van Meerbeek, K. Yoshihara, Y. Yoshida, A. Mine, J. De Munck, K.L. Van Landuyt, State of the art of self-etch adhesives. Dent. Mater. 27, 17 (2011)

    Article  CAS  Google Scholar 

  23. D.H. Pashley, F.R. Tay, L. Breschi, L. Tjaderhane, R.M. Carvalho, M. Carrilho, A. Tezvergil-Mutluay, State of the art etch-and-rinse adhesives. Dent. Mater. 27, 1 (2011)

    Article  CAS  Google Scholar 

  24. D. Khvostenko, J.C. Mitchell, T.J. Hilton, J.L. Ferracane, J.J. Kruzic, Mechanical performance of novel bioactive glass containing dental restorative composites. Dent. Mater. 29, 1139 (2013)

    Article  CAS  Google Scholar 

  25. J.M. Antonucci, D.N. Zeiger, K. Tang, S. Lin-Gibson, B.O. Fowler, N.J. Lin, Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent. Mater. 28, 219 (2012)

    Article  CAS  Google Scholar 

  26. N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, R. Hazan, Alternative antimicrobial approach: nano-antimicrobial materials. Evid. Based Complement. Alternat. Med. 2015, 246012 (2015)

    Article  Google Scholar 

  27. S. Imazato, A. Kuramoto, Y. Takahashi, S. Ebisu, M.C. Peters, In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dent. Mater. 22, 527 (2006)

    Article  CAS  Google Scholar 

  28. N. Beyth, I. Yudovin-Farber, R. Bahir, A.J. Domb, E.I. Weiss, Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 27, 3995 (2006)

    Article  CAS  Google Scholar 

  29. S. Imazato, Y. Kinomoto, H. Tarumi, S. Ebisu, F.R. Tay, Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dent. Mater. 19, 313 (2003)

    Article  CAS  Google Scholar 

  30. L. Cheng, M.D. Weir, K. Zhang, D.D. Arola, X. Zhou, H.H. Xu, Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate. J. Dent. 41, 345 (2013)

    Article  CAS  Google Scholar 

  31. S. Wang, K. Zhang, X. Zhou, N. Xu, H.H. Xu, M.D. Weir, Y. Ge, S. Wang, M. Li, Y. Li, X. Xu, L. Cheng, Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm. Int. J. Mol. Sci. 15, 12791 (2014)

    Article  CAS  Google Scholar 

  32. F. Li, M.D. Weir, H.H. Xu, Effects of quaternary ammonium chain length on antibacterial bonding agents. J. Dent. Res. 92, 932 (2013)

    Article  CAS  Google Scholar 

  33. Y. Li, X. Hu, Y. Xia, Y. Ji, J. Ruan, M.D. Weir, X. Lin, Z. Nie, N. Gu, R. Masri, X. Chang, H.H.K. Xu, Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities. Dent. Mater. 34, 1310 (2018)

    Article  CAS  Google Scholar 

  34. H. Wang, S. Wang, L. Cheng, Y. Jiang, M.A.S. Melo, M.D. Weir, T.W. Oates, X. Zhou, H.H.K. Xu, Novel dental composite with capability to suppress cariogenic species and promote non-cariogenic species in oral biofilms. Mater. Sci. Eng., C 94, 587 (2019)

    Article  CAS  Google Scholar 

  35. R. Osorio, E. Osorio, A.L. Medina-Castillo, M. Toledano, Polymer nanocarriers for dentin adhesion. J. Dent. Res. 93, 1258 (2014)

    Article  CAS  Google Scholar 

  36. R. Frankenberger, N. Kramer, U. Lohbauer, S.A. Nikolaenko, S.M. Reich, Marginal integrity: is the clinical performance of bonded restorations predictable in vitro? J. Adhes. Dent. 9(Suppl 1), 107 (2007)

    Google Scholar 

  37. L. Wang, X. Xie, M.D. Weir, A.F. Fouad, L. Zhao, H.H. Xu, Effect of bioactive dental adhesive on periodontal and endodontic pathogens. J. Mater. Sci. Mater. Med. 27, 168 (2016)

    Article  CAS  Google Scholar 

  38. N. Zhang, M.D. Weir, E. Romberg, Y. Bai, H.H. Xu, Development of novel dental adhesive with double benefits of protein-repellent and antibacterial capabilities. Dent. Mater. 31, 845 (2015)

    Article  CAS  Google Scholar 

  39. M.D. Weir, J.L. Moreau, E.D. Levine, H.E. Strassler, L.C. Chow, H.H. Xu, Nanocomposite containing CaF(2) nanoparticles: thermal cycling, wear and long-term water-aging. Dent. Mater. 28, 642 (2012)

    Article  CAS  Google Scholar 

  40. M.B. Lopes, M.A. Sinhoreti, A. Gonini-Júnior, S. Consani, J.F. McCabe, Comparative study of tubular diameter and quantity for human and bovine dentin at different depths. Braz. Dent. J. 20, 279 (2009)

    Article  Google Scholar 

  41. L. Chen, Z. Ren, X. Zhou, J. Zeng, J. Zou, Y. Li, Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative. Appl. Microbiol. Biotechnol. 100, 857 (2016)

    Article  CAS  Google Scholar 

  42. D.S. Brauer, N. Karpukhina, R.V. Law, R.G. Hill, Structure of fluoride-containing bioactive glasses. J. Mater. Chem. 19, 5629 (2009)

    Article  CAS  Google Scholar 

  43. J.A. Cury, L.M. Tenuta, Enamel remineralization: controlling the caries disease or treating early caries lesions? Braz. Oral Res. 23(Suppl 1), 23 (2009)

    Article  Google Scholar 

  44. J.M. Ten Cate, Fluorides in caries prevention and control: empiricism or science. Caries Res. 38, 254 (2004)

    Article  Google Scholar 

  45. D.V. Salar, F. Garcia-Godoy, C.M. Flaitz, M.J. Hicks, Potential inhibition of demineralization in vitro by fluoride-releasing sealants. J. Am. Dent. Assoc. 138, 502 (2007)

    Article  Google Scholar 

  46. M.S. Shinohara, M.F. De Goes, L.F. Schneider, J.L. Ferracane, P.N. Pereira, V. Di Hipolito, T. Nikaido, Fluoride-containing adhesive: durability on dentin bonding. Dent. Mater. 25, 1383 (2009)

    Article  CAS  Google Scholar 

  47. E. Sivapriya, K. Sridevi, R. Periasamy, L. Lakshminarayanan, A.R. Pradeepkumar, Remineralization ability of sodium fluoride on the microhardness of enamel, dentin, and dentinoenamel junction: an in vitro study. J. Conserv. Dent. 20, 100 (2017)

    Article  CAS  Google Scholar 

  48. H. Engelberg-Kulka, S. Amitai, I. Kolodkin-Gal, R. Hazan, Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet. 2, e135 (2006)

    Article  CAS  Google Scholar 

  49. H. Murata, R.R. Koepsel, K. Matyjaszewski, A.J. Russell, Permanent, non-leaching antibacterial surface—2: how high density cationic surfaces kill bacterial cells. Biomaterials 28, 4870 (2007)

    Article  CAS  Google Scholar 

  50. H. Zhou, H. Liu, M.D. Weir, M.A. Reynolds, K. Zhang, H.H. Xu, Three-dimensional biofilm properties on dental bonding agent with varying quaternary ammonium charge densities. J. Dent. 53, 73 (2016)

    Article  CAS  Google Scholar 

  51. J. Kreth, J.L. Ferracane, C.S. Pfeifer, S. Khajotia, J. Merritt, At the interface of materials and microbiology: a call for the development of standardized approaches to assay biomaterial-biofilm interactions. J. Dent. Res. 98, 850 (2019)

    Article  CAS  Google Scholar 

  52. N. Namba, Y. Yoshida, N. Nagaoka, S. Takashima, K. Matsuura-Yoshimoto, H. Maeda, B. Van Meerbeek, K. Suzuki, S. Takashiba, Antibacterial effect of bactericide immobilized in resin matrix. Dent. Mater. 25, 424 (2009)

    Article  CAS  Google Scholar 

  53. S. Imazato, Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry. Dent. Mater. J. 28, 11 (2009)

    Article  CAS  Google Scholar 

  54. C. Van Loveren, Antimicrobial activity of fluoride and its in vivo importance: identification of research questions. Caries Res. 35(Suppl 1), 65 (2001)

    Article  CAS  Google Scholar 

  55. K. Moharamzadeh, R. Van Noort, I.M. Brook, A.M. Scutt, Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent. Mater. 23, 40 (2007)

    Article  CAS  Google Scholar 

  56. J. Fischer, D. Pröfrock, N. Hort, R. Willumeit, F. Feyerabend, Improved cytotoxicity testing of magnesium materials. Mater. Sci. Eng., B 176, 830 (2011)

    Article  CAS  Google Scholar 

  57. L. Wei Su, D.J. Lin, J. Yen Uan, Novel dental resin composites containing LiAl-F layered double hydroxide (LDH) filler: fluoride release/recharge, mechanical properties, color change, and cytotoxicity. Dent. Mater. 35, 663 (2019)

    Article  CAS  Google Scholar 

  58. D.M. Deng, J.M. ten Cate, Demineralization of dentin by Streptococcus mutans biofilms grown in the constant depth film fermentor. Caries Res. 38, 54 (2004)

    Article  CAS  Google Scholar 

  59. A. Gama-Teixeira, M.R. Simionato, S.N. Elian, M.A. Sobral, M.A. Luz, Streptococcus mutans-induced secondary caries adjacent to glass ionomer cement, composite resin and amalgam restorations in vitro. Braz. Oral Res. 21, 368 (2007)

    Article  Google Scholar 

  60. W. Krzyściak, A. Jurczak, D. Kościelniak, B. Bystrowska, A. Skalniak, The virulence of Streptococcus mutans and the ability to form biofilms. Eur. J. Clin. Microbiol. Infect. Dis. 33, 499 (2014)

    Article  Google Scholar 

  61. A.A. Balhaddad, A.A. Kansara, D. Hidan, M.D. Weir, H.H.K. Xu, M.A.S. Melo, Toward dental caries: exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials. Bioact. Mater. 4, 43 (2019)

    Article  Google Scholar 

  62. G. Svensäter, U.B. Larsson, E.C. Greif, D.G. Cvitkovitch, I.R. Hamilton, Acid tolerance response and survival by oral bacteria. Oral Microbiol. Immunol. 12, 266 (1997)

    Article  Google Scholar 

  63. K. McNeill, I.R. Hamilton, Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol. Lett. 221, 25 (2003)

    Article  CAS  Google Scholar 

  64. F. Garcia Godoy, N. Kramer, A.J. Feilzer, R. Frankenberger, Long-term degradation of enamel and dentin bonds: 6-year results in vitro vs in vivo. Dent. Mater. 26, 1113 (2010)

    Article  CAS  Google Scholar 

  65. J. Frencken, M. Van’t Hof, W. Van Amerongen, C. Holmgren, Effectiveness of single-surface ART restorations in the permanent dentition: a meta-analysis. J. Dent. Res. 83, 120 (2004)

    Article  CAS  Google Scholar 

  66. K.L. Van Landuyt, J. Snauwaert, J. De Munck, M. Peumans, Y. Yoshida, A. Poitevin, E. Coutinho, K. Suzuki, P. Lambrechts, B. Van Meerbeek, Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28, 3757 (2007)

    Article  CAS  Google Scholar 

  67. Y. Delaviz, Y. Finer, J.P. Santerre, Biodegradation of resin composites and adhesives by oral bacteria and saliva: a rationale for new material designs that consider the clinical environment and treatment challenges. Dent. Mater. 30, 16 (2014)

    Article  CAS  Google Scholar 

  68. F.D. Al-Qarni, F. Tay, M.D. Weir, M.A.S. Melo, J. Sun, T.W. Oates, X. Xie, H.H.K. Xu, Protein-repelling adhesive resin containing calcium phosphate nanoparticles with repeated ion-recharge and re-releases. J. Dent. 78, 91 (2018)

    Article  CAS  Google Scholar 

  69. S. Imazato, A. Ehara, M. Torii, S. Ebisu, Antibacterial activity of dentine primer containing MDPB after curing. J. Dent. 26, 267 (1998)

    Article  CAS  Google Scholar 

  70. N. Kramer, K.H. Kunzelmann, F. Garcia-Godoy, I. Haberlein, B. Meier, R. Frankenberger, Determination of caries risk at resin composite margins. Am. J. Dent. 20, 59 (2007)

    Google Scholar 

  71. B. Pitts, M.A. Hamilton, N. Zelver, P.S. Stewart, A microtiter-plate screening method for biofilm disinfection and removal. J. Microbiol. Methods 54, 269 (2003)

    Article  CAS  Google Scholar 

  72. F. Li, M.D. Weir, J. Chen, H.H. Xu, Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent. Mater. 29, 450 (2013)

    Article  CAS  Google Scholar 

  73. ISO Standard 10993-12, Biological evaluation of medical devices: sample preparation and reference materials (International Organization for Standardization, Geneva, 2007)

    Google Scholar 

  74. B.W. Sigusch, T. Pflaum, A. Völpel, K. Gretsch, S. Hoy, D.C. Watts, K.D. Jandt, Resin-composite cytotoxicity varies with shade and irradiance. Dent. Mater. 28, 312 (2012)

    Article  CAS  Google Scholar 

  75. L. Huang, Y.H. Xiao, X.D. Xing, F. Li, S. Ma, L.L. Qi, J.H. Chen, Antibacterial activity and cytotoxicity of two novel cross-linking antibacterial monomers on oral pathogens. Arch. Oral Biol. 56, 367 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Deepak Menon for his help and discussion. We would like to acknowledge the technical support of the Core Imaging Facility of the University of Maryland Baltimore.

Funding

This work was supported by the University of Maryland School of Dentistry bridging fund (HX), and University of Maryland Baltimore seed grant (HX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael D. Weir or Hockin H. K. Xu.

Ethics declarations

Conflict of interest

The authors of the manuscript do not have conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadila, G., Dai, Q., Melo, M.A.S. et al. Anti-caries nanostructured dental adhesive reduces biofilm pathogenicity and raises biofilm pH to protect tooth structures. Journal of Materials Research 36, 533–546 (2021). https://doi.org/10.1557/s43578-020-00014-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00014-3

Keywords

Navigation