Skip to main content

Advertisement

Log in

Effect of bioactive dental adhesive on periodontal and endodontic pathogens

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The objectives of this study were to: (1) develop a new bioactive dental bonding agent with nanoparticles of amorphous calcium phosphate and dimethylaminohexadecyl methacrylate for tooth root caries restorations and endodontic applications, and (2) investigate biofilm inhibition by the bioactive bonding agent against eight species of periodontal and endodontic pathogens for the first time. Bonding agent was formulated with 5 % of dimethylaminohexadecyl methacrylate. Nanoparticles of amorphous calcium phosphate at 30 wt% was mixed into adhesive. Eight species of biofilms were grown on resins: Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Parvimonas micra, Enterococcus faecalis, Enterococcus faecium. Colony-forming units, live/dead assay, biomass, metabolic activity and polysaccharide of biofilms were determined. The results showed that adding dimethylaminohexadecyl methacrylate and nanoparticles of amorphous calcium phosphate into bonding agent did not decrease dentin bond strength (P > 0.1). Adding dimethylaminohexadecyl methacrylate reduced the colony-forming units of all eight species of biofilms by nearly three orders of magnitude. The killing efficacy of dimethylaminohexadecyl methacrylate resin was: P. gingivalis > A. actinomycetemcomitans > P. intermedia > P. nigrescens > F. nucleatum > P. micra > E. faecalis > E. faecium. Dimethylaminohexadecyl methacrylate resin had much less biomass, metabolic activity and polysaccharide of biofilms than those without dimethylaminohexadecyl methacrylate (P < 0.05). In conclusion, a novel dental adhesive was developed for root caries and endodontic applications, showing potent inhibition of biofilms of eight species of periodontal and endodontic pathogens, and reducing colony-forming units by three orders of magnitude. The bioactive adhesive is promising for tooth root restorations to provide subgingival margins with anti-periodontal pathogen capabilities, and for endodontic sealer applications to combat endodontic biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Griffin S, Griffin P, Swann J, Zlobin N. Estimating rates of new root caries in older adults. J Dent Res. 2004;83:634–8.

    Article  Google Scholar 

  2. Shen S, Samaranayake LP, Yip HK. In vitro growth, acidogenicity and cariogenicity of predominant human root caries flora. J Dent. 2004;32:667–78.

    Article  Google Scholar 

  3. Hellyer P, Beighton D, Heath M, Lynch E. Root caries in older people attending a general dental practice in east sussex. Brit Dent J. 1990;169:201–6.

    Article  Google Scholar 

  4. Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent. 2007;35:201–6.

    Article  Google Scholar 

  5. Ashimoto A, Chen C, Bakker I, Slots J. Polymerase chain reaction detection of eight putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions. Oral Microbiol Immunol. 1996;11:266–73.

    Article  Google Scholar 

  6. Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16s clonal analysis. J Clin Microbiol. 2005;43:3944–55.

    Article  Google Scholar 

  7. Andrian E, Grenier D, Rouabhia M. Porphyromonas gingivalis-epithelial cell interactions in periodontitis. J Dent Res. 2006;85:392–403.

    Article  Google Scholar 

  8. Fteita D, Könönen E, Söderling E, Gürsoy UK. Effect of estradiol on planktonic growth, coaggregation, and biofilm formation of the prevotella intermedia group bacteria. Anaerobe. 2014;27:7–13.

    Article  Google Scholar 

  9. Fine DH, Markowitz K, Furgang D, Fairlie K, Ferrandiz J, Nasri C, et al. Aggregatibacter actinomycetemcomitans and its relationship to initiation of localized aggressive periodontitis: longitudinal cohort study of initially healthy adolescents. J Clin Microbiol. 2007;45:3859–69.

    Article  Google Scholar 

  10. Gürsoy M, Haraldsson G, Hyvönen M, Sorsa T, Pajukanta R, Könönen E. Does the frequency of prevotella intermedia increase during pregnancy? Oral Microbiol Immunol. 2009;24:299–303.

    Article  Google Scholar 

  11. Signat B, Roques C, Poulet P, Duffaut D. Role of fusobacterium nucleatum in periodontal health and disease. Curr Issues Mol Biol. 2011;13:25–36.

    Google Scholar 

  12. Shchipkova A, Nagaraja H, Kumar P. Subgingival microbial profiles of smokers with periodontitis. J Dent Res. 2010;89:1247–53.

    Article  Google Scholar 

  13. Saleh I, Ruyter I, Haapasalo M, Ørstavik D. Survival of enterococcus faecalis in infected dentinal tubules after root canal filling with different root canal sealers in vitro. Int Endod J. 2004;37:193–8.

    Article  Google Scholar 

  14. Ferrari P, Cai S, Bombana A. Effect of endodontic procedures on enterococci, enteric bacteria and yeasts in primary endodontic infections. Int Endod J. 2005;38:372–80.

    Article  Google Scholar 

  15. Ferracane JL. Resin composite-state of the art. Dent Mater. 2011;27:29–38.

    Article  Google Scholar 

  16. Wei YJ, Silikas N, Zhang ZT, Watts DC. Hygroscopic dimensional changes of self-adhering and new resin-matrix composites during water sorption/desorption cycles. Dent Mater. 2011;27:259–66.

    Article  Google Scholar 

  17. Pashley DH, Tay FR. Aggressiveness of contemporary self-etching adhesives: Part ii: etching effects on unground enamel. Dent Mater. 2001;17:430–44.

    Article  Google Scholar 

  18. Ferracane JL, Hilton TJ, Sakaguchi RL. Introduction to and outcomes of the conference on adhesion in dentistry. Dent Mater. 2010;26:105–7.

    Article  Google Scholar 

  19. Imazato S, Ehara A, Torii M, Ebisu S. Antibacterial activity of dentine primer containing mdpb after curing. J Dent. 1998;26:267–71.

    Article  Google Scholar 

  20. Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater. 2003;19:449–57.

    Article  Google Scholar 

  21. Li F, Weir MD, Xu HH. Effects of quaternary ammonium chain length on antibacterial bonding agents. J Dent Res. 2013;92:932–8.

    Article  Google Scholar 

  22. Zhang L, Weir MD, Hack G, Fouad AF, Xu HH. Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release. J Dent. 2015;43:1587–95.

    Article  Google Scholar 

  23. Weir MD, Chow LC, Xu HH. Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res. 2012;91:979–84.

    Article  Google Scholar 

  24. Xu HH, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater. 2011;27:762–9.

    Article  Google Scholar 

  25. Li F, Weir MD, Chen J, Xu HH. Effect of charge density of bonding agent containing a new quaternary ammonium methacrylate on antibacterial and bonding properties. Dent Mater. 2014;30:433–41.

    Article  Google Scholar 

  26. Antonucci JM, O’Donnell JNR, Schumacher GE, Skrtic D. Amorphous calcium phosphate composites and their effect on composite–adhesive–dentin bonding. J Adhes Sci Technol. 2009;23:1133–47.

    Article  Google Scholar 

  27. Nadkarni MA, Martin FE, Hunter N, Jacques NA. Methods for optimizing DNA extraction before quantifying oral bacterial numbers by real-time PCR. FEMS Microbiol Lett. 2009;296:45–51.

    Article  Google Scholar 

  28. Chen C, Weir MD, Cheng L, Lin NJ, Lin-Gibson S, Chow L, et al. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles. Dent Mater. 2014;30:891–901.

    Article  Google Scholar 

  29. Ebi N, Imazato S, Noiri Y, Ebisu S. Inhibitory effects of resin composite containing bactericide-immobilized filler on plaque accumulation. Dent Mater. 2001;17:485–91.

    Article  Google Scholar 

  30. Masdea L, Kulik E, Hauser-Gerspach I, Ramseier A, Filippi A, Waltimo T. Antimicrobial activity of streptococcus salivarius k12 on bacteria involved in oral malodour. Arch Oral Biol. 2012;57:1041–7.

    Article  Google Scholar 

  31. Pitts B, Hamilton MA, Zelver N, Stewart PS. A microtiter-plate screening method for biofilm disinfection and removal. J Microbiol Methods. 2003;54:269–76.

    Article  Google Scholar 

  32. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, et al. Update on prevalence of periodontitis in adults in the united states: Nhanes 2009 to 2012. J Periodontol. 2015;86:611–22.

    Article  Google Scholar 

  33. Kim JK, Baker LA, Seirawan H, Crimmins EM. Prevalence of oral health problems in us adults, nhanes 1999–2004: exploring differences by age, education, and race/ethnicity. Spec Care Dent. 2012;32:234–41.

    Article  Google Scholar 

  34. National Toxicology Program. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. National Toxicology Program Center for the Evaluation of Risks to Human Reproduction. 2008.

  35. Skrtic D, Antonucci JM, Eanes ED. Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J Res Natl Inst Stand Technol. 2003;108:167–82.

    Article  Google Scholar 

  36. Chen L, Suh BI. Bisphenol A in dental materials: a review. JSM Dent. 2013;1:1004.

    Google Scholar 

  37. Karapinar-Kazandag M, Bayrak OF, Yalvaç ME, Erev H, Tanalp J, Sahin F, et al. Cytotoxicity of 5 endodontic sealers on L929 cell line and human dental pulp cells. Int Endod J. 2011;44:626–34.

    Article  Google Scholar 

  38. Xu P, Liang J, Dong G, Zheng L, Ye L. Cytotoxicity of RealSeal on human osteoblast-like MG63 cells. J Endod. 2010;36:40–4.

    Article  Google Scholar 

  39. Onay EO, Ungor M, Ozdemir BH. In vivo evaluation of the biocompatibility of a new resin-based obturation system. Oral Surg Oral Med Oral Pathol Oral Radiol. 2007;104:60–6.

    Article  Google Scholar 

  40. Garcia Lda F, Marques AA, Roselino Lde M, Pires-de-Souza Fde C, Consani S. Biocompatibility evaluation of Epiphany/Resilon root canal filling system in subcutaneous tissue of rats. J Endod. 2010;36:110–4.

    Article  Google Scholar 

  41. Cotton TP, Schindler WG, Schwartz SA, Watson WR, Hargreaves KM. A retrospective study comparing clinical outcomes after obturation with Resilon/Epiphany or Gutta-Percha/Kerr sealer. J Endod. 2008;34:789–97.

    Article  Google Scholar 

  42. Palmer L, Chapple I, Wright H, Roberts A, Cooper P. Extracellular deoxyribonuclease production by periodontal bacteria. J Periodontal Res. 2012;47:439–45.

    Article  Google Scholar 

  43. Spratt D, Pratten J, Wilson M, Gulabivala K. An in vitro evaluation of the antimicrobial efficacy of irrigants on biofilms of root canal isolates. Int Endod J. 2001;34:300–7.

    Article  Google Scholar 

  44. Beveridge TJ. Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol. 1999;181:4725–33.

    Google Scholar 

  45. Daoud NN, Dickinson NA, Gilbert P. Antimicrobial activity and physico-chemical properties of some alkyldimethylbenzylammonium chlorides. Microbios. 1982;37:73–85.

    Google Scholar 

  46. Gilbert P, Al-taae A. Antimicrobial activity of some alkyltrimethylammonium bromides. Lett Appl Microbiol. 1985;1:101–4.

    Article  Google Scholar 

  47. Backlund CJ, Sergesketter A, Offenbacher S, Schoenfisch M. Antibacterial efficacy of exogenous nitric oxide on periodontal pathogens. J Dent Res. 2014;93:1089–94.

    Article  Google Scholar 

  48. Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG, Allaker RP. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int J Antimicrob Agents. 2012;40:135–9.

    Article  Google Scholar 

  49. Hosaka Y, Saito A, Maeda R, Fukaya C, Morikawa S, Makino A, et al. Antibacterial activity of povidone–iodine against an artificial biofilm of porphyromonas gingivalis and fusobacterium nucleatum. Arch Oral Biol. 2012;57:364–68.

    Article  Google Scholar 

  50. Mundy L, Sahm D, Gilmore M. Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev. 2000;13:513–22.

    Article  Google Scholar 

  51. Rams TE, Feik D, Mortensen JE, Degener JE, van Winkelhoff AJ. Antibiotic susceptibility of periodontal enterococcus faecalis. J Periodontol. 2013;84:1026–33.

    Article  Google Scholar 

  52. Kitagawa R, Kitagawa H, Izutani N, Hirose N, Hayashi M, Imazato S. Development of an antibacterial root canal filling system containing mdpb. J Dent Res. 2014;93:1277–82.

    Article  Google Scholar 

  53. Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against streptococcus mutans. Biomaterials. 2006;27:3995–4002.

    Article  Google Scholar 

  54. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40:175–79.

    Article  Google Scholar 

  55. Pöllänen MT, Paino A, Ihalin R. Environmental stimuli shape biofilm formation and the virulence of periodontal pathogens. Int J Mol Sci. 2013;14:17221–37.

    Article  Google Scholar 

  56. Rimondini L, Palazzo B, Iafisco M, Canegallo L, Demarosi F, Merlo M, et al. The remineralizing effect of carbonate-hydroxyapatite nanocrystals on dentine. Mater Sci Forum. 2007;539:602–5. Trans Tech Publications.

    Article  Google Scholar 

  57. Besinis A, van Noort R, Martin N. Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles. Dent Mater. 2012;28:1012–23.

    Article  Google Scholar 

  58. Li F, Wang P, Weir MD, Fouad AF, Xu HHK. Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model. Acta Biomater. 2014;10:2804–13.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01DE17974 (HX), National Science Foundation of China NSFC 81400487 (LW), 81200820 (XX), Youth Fund of Science and Technology Jilin Province 20150520043JH (LW), China Postdoctoral Foundation 2015M581405 (LW), China Scholarship Council (LW), NSFC 31328008 (LZ), NSF Guangdong 20130010014253 (LZ) and 2014A030313275 (LZ), Guangdong Science and Technology 2012B010200024 (LZ), and University of Maryland School of Dentistry bridging fund (HX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Zhao or Hockin H. K. Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xie, X., Weir, M.D. et al. Effect of bioactive dental adhesive on periodontal and endodontic pathogens. J Mater Sci: Mater Med 27, 168 (2016). https://doi.org/10.1007/s10856-016-5778-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5778-2

Keywords

Navigation