Skip to main content

Advertisement

Log in

Electric property, anti-reduction mechanism of (1 − x)BaTiO3xBiCoO3–Mn ceramics

  • Invited Feature Paper
  • Focus Issue: Lead-Free Ferroelectric Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

0.5wt%MnO2-doped (1 − x)BaTiO3xBiCoO3 ceramics short as (1 − x)BT–xBC–M sintered in air and reducing atmosphere via solid-state process were investigated. The X-ray diffraction results showed that solid solubility in (1 − x)BT–xBC ceramics sintered in the air was higher than that in reducing atmosphere. (1 − x)BT–xBC–M ceramics sintered in air transformed from tetragonal to pseudo-cubic phase when x ≥ 0.1. The scanning electron microscopy results indicated that the average grain size increased with the BC component increasing; however, opposite phenomena occurred in samples sintered in the reducing atmosphere. The dielectric temperature curves of samples sintered in reducing atmosphere were flatted with excellent insulation resistivity of an order of magnitude of 1013 Ω·cm, while anomalous dielectric constant and dielectric loss of samples sintered in the air with deteriorated insulation resistivity of an order of magnitude of 107 Ω·cm. The anti-reduction mechanism of (1 − x)BT–xBC–M system was explained by the “electron–hole” trapping effect and formation of defect dipoles \(\left[ {{\text{Mn}}_{{{\text{Ti}}}} ^{{\prime \prime }} - V_{{\text{O}}}^{{ \cdot \cdot }} } \right]\) and \(\left[ {2{\text{Co}}_{{{\text{Ti}}}} ^{\prime } - V_{{\text{O}}}^{{ \cdot \cdot }} } \right]\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M. Pan, C. Randall, A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 26(3), 44 (2010)

    Article  CAS  Google Scholar 

  2. R. Zuo, N. Zhang, L. Li, Interfacial:reaction of Ag/Pd metals with Pb-based relaxor ferroelectrics including additives. Ceram. Int. 27, 85 (2001)

    Article  CAS  Google Scholar 

  3. H. Gong, X. Wang, L. Li, Interfacial diffusionbehavior inNi-BaTiO3 MLCCs with ultra-thin active layers. Electron. Mater. Lett. 10, 417 (2014)

    Article  CAS  Google Scholar 

  4. H. Saito, H. Chazono, H. Kishi, X7R multilayer ceramic capacitors with nickel electrodes. Jpn. J. Appl. Phys. 30, 2307 (1991)

    Article  CAS  Google Scholar 

  5. Y. Sakabe, T. Reynolds, Base-metal electrode capacitors. Am. Ceram. Soc. Bull. 81, 24 (2002)

    CAS  Google Scholar 

  6. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797 (1999)

    Article  CAS  Google Scholar 

  7. D. Wang, Z. Fan, S. Zhang, Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy 76, 104944 (2020)

    Article  CAS  Google Scholar 

  8. S. Wang, S. Zhang, X. Zhou, Effect of sintering atmospheres on the microstructure and dielectric properties of Yb/Mg co-doped BaTiO3 ceramics. Mater. Lett. 59, 2457 (2005)

    Article  CAS  Google Scholar 

  9. Y. Tsur, T.D. Dunbar, C.A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7, 25 (2001)

    Article  CAS  Google Scholar 

  10. L. Chen, H. Fan, S. Zhang, Investigation of MnO2-doped (Ba, Ca)TiO3 lead-free ceramics for high power piezoelectric applications. J. Am. Ceram. Soc. 100, 3568 (2017)

    Article  CAS  Google Scholar 

  11. B.M. Teresa, V. Massimo, B. Vincenzo, Incorporation of Er3+ into BaTiO3. J. Am. Ceram. Soc. 85, 1569 (2010)

    Google Scholar 

  12. G. Jonker, E. Havinga, The influence of foreign ions on the crystal lattice of barium titanate. Mater. Res. Bull. 17, 345 (1982)

    Article  CAS  Google Scholar 

  13. H. Kishi, N. Kohzu, T. Okuda, Effect of occupational sites of rare-earth elements on the microstructure in BaTiO3. Jpn. J. Appl. Phys. 38, 5452 (1999)

    Article  CAS  Google Scholar 

  14. H.M. Chan, M.R. Harmer, D.M. Smyth, Compensating defects in highly donor-doped BaTiO3. J. Am. Ceram. Soc. 69, 507 (1986)

    Article  CAS  Google Scholar 

  15. J. Bernard, D. Houivet, J. El Fallah, J.M. Haussonne, MgTiO3 for Cubase metal muItiIayer ceramic capacitors. J. Eur. Ceram. Soc. 24, 1877 (2004)

    Article  CAS  Google Scholar 

  16. D. Hennings, H. Schreinemacher, Ca-acceptors in dielectric ceramics sintered in reducive atmospheres. J. Eur. Ceram. Soc. 15, 795 (1995)

    Article  CAS  Google Scholar 

  17. Y. Han, J. Appleby, D. Smyth, Calcium as acceptor impurity in BaTiO3. J. Am Ceram. Soc. 70, 96 (1987)

    Article  CAS  Google Scholar 

  18. Z. Sheng, X. Wang, Effect of MnO2 on the electrical and dielectric properties of Y-doped Ba0.95Ca0.05Ti0.85Zr0.15O3 ceramics in reducing atmosphere. Ceram. Int. 40, 13833 (2014)

    Article  Google Scholar 

  19. X. Cheng, X. Li, Z. Zhao, Influence of reoxidation time on electrical properties of Y2O3-doped BaTiO3 ceramics sintered in a reducing atmosphere. J. Mater. Sci. 274, 012124 (2017)

    Google Scholar 

  20. J. Rödel, G. Tomandl, Degradation of Mn-doped BaTiO3 ceramic under a high d.c. electric field. J. Mater. Sci. 19, 3515 (1984)

    Article  Google Scholar 

  21. H.J. Hagemann, H. Ihrig, Valence change and phase stability of 3d-doped BaTiO3 annealed in oxygen and hydrogen. Phys. Rev. B 20, 3871 (1979)

    Article  CAS  Google Scholar 

  22. S.H. Yoon, C.A. Randall, K.H. Hur, Difference between resistance degradation of fixedvalence acceptor (Mg) and variable valence acceptor (Mn)-doped BaTiO3 ceramics. J. Appl. Phys. 108, 0641011 (2010)

    Article  Google Scholar 

  23. H. Gong, X. Wang, L. Li, Electrical and reliability characteristics of Mn-doped nano BaTiO3-based ceramics for ultrathin multilayer ceramic capacitor application. J. Appl. Phys. 112, 114119 (2012)

    Article  Google Scholar 

  24. K. Albertsen, D. Hennings, O. Steigelmann, Donor/acceptor charge complex formation, the role of firingatmospheres. J. Electroceram. 23, 193 (1998)

    Article  Google Scholar 

  25. R. Waser, T. Baiatu, K.H. Härdtl, Dc electrical degradation of perovskite-type titanates: I, ceramics. J. Am. Ceram. 73, 1645 (2010)

    Article  Google Scholar 

  26. S.H. Cha, Y.H. Han, Effects of Mn doping on dielectric properties of Mg-doped BaTiO3. J. Appl. Phys. 100, 751 (2006)

    Google Scholar 

  27. S.K. Jo, S.H. Kang, Y.H. Han, Dielectric properties of Mg-and Mn-doped (Ba1−xSrx)(Ti1-yZry)O3. Met. Mater. Int. 19, 341 (2013)

    Article  CAS  Google Scholar 

  28. J. Jeong, Y.H. Han et al., Electrical properties of acceptor doped BaTiO3. J. Electroceram. 13, 549 (2004)

    Article  CAS  Google Scholar 

  29. D. Han, C. Wang, D. Lu, A temperature stable (Ba1–xCex)(Ti1–x/2Mgx/2)O3 lead-free ceramic for X4D capacitors. J. Alloys Compd. 821, 153480 (2020)

    Article  CAS  Google Scholar 

  30. X. Lai, H. Hao, H. Liu, Structure and dielectric properties of MgO-coated BaTiO3 ceramics. J. Mater. Sci. 31, 8963 (2020)

    CAS  Google Scholar 

  31. L. Wu, X. Wang, L. Li, Core-shell BaTiO3@BiScO3 particles for local graded dielectric ceramicswith enhanced temperature stability and energy storage capability. J. Alloys Compd. 688, 113 (2016)

    Article  CAS  Google Scholar 

  32. M. Liu, H. Hao, W. Chen, Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3. Ceram. Int. 42, 379 (2016)

    Article  Google Scholar 

  33. Z. Sheng, X. Wang, L. Li, Dielectric properties and microstructures of Ta-doped BaTiO3-(Bi0.5Na0.5)TiO3 ceramic for X9R application. J. Mater. Sci. 28, 3768 (2017)

    Google Scholar 

  34. Z. Shen, X. Wang, L. Li, Nb-doped BaTiO3-(Bi0.5Na0.5)TiO3 ceramics with core-shell structure for high-temperature dielectric applications. Adv. Appl. Ceram. 115, 435 (2017)

    Article  Google Scholar 

  35. H. Hao, H. Liu, S. Zhang, Fabrication, structure and property of BaTiO3-based dielectric ceramics with a multilayer core–shell structure. Scr. Mater. 67, 451 (2012)

    Article  CAS  Google Scholar 

  36. C. Chen, H. Hao, J. Cui, The role of diffusion behavior on the formation and evolution of the core-shell structure in BaTiO3-based ceramics. J. Am. Ceram. Soc. 103, 304 (2019)

    Article  Google Scholar 

  37. L. Wang, W. Ren, W. Ma, Improved electrical properties for Mn-doped lead-free piezoelectric potassium sodium niobate ceramics. AIP. Adv. 5, 097120 (2015)

    Article  Google Scholar 

  38. W. Liu, C. Randall, Thermally stimulated relaxation in Fe-doped SrTiO3 systems: I. single crystals. J. Am. Ceram. Soc. 91, 3245 (2008)

    Article  CAS  Google Scholar 

  39. S. Yoon, C. Randall, K. Hur, Correlation between resistancedegradation and thermally stimulated depolarization current inacceptor (Mg)-doped BaTiO3 submicrometer fine-grain ceramics. J. Am. Ceram. Soc. 93, 1950 (2012)

    Google Scholar 

  40. L. Zhang, H. Hao, H. Liu, Defect structure-electrical property relationship in Mn-dopedcalcium strontium titanate dielectric ceramics. J. Am. Ceram. Soc. 100, 4638 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC-Guangdong Joint Funds of the Natural Science Foundation of China (No. U1601209), Major Program of the Natural Science Foundation of China (51790490), Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, and Natural Science Foundation of China (51872213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Hao, H., Luo, Z. et al. Electric property, anti-reduction mechanism of (1 − x)BaTiO3xBiCoO3–Mn ceramics. Journal of Materials Research 36, 1037–1047 (2021). https://doi.org/10.1557/s43578-020-00002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00002-7

Keywords

Navigation