Skip to main content
Log in

Design of compositionally modulated materials for controlled strain release during deformation through phase-field simulations

  • Phase-Field Method and Its Applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Impurity segregation and solute partitioning, which can lead to microscale concentration modulations (microCMs), are common phenomena in materials processed through various methods. Traditionally, these microCMs have been viewed as undesirable, necessitating costly homogenization treatments for their removal. However, in this study, we introduce an innovative alloy design strategy that capitalizes on the potential benefits offered by microCMs, as revealed through phase-field simulations. The majority of our simulation predictions have received strong support from experimental investigations, and these predictions have guided the development of new experimental designs for microCM alloys with exceptional properties. We highlight two notable examples. The first example demonstrates how microCMs can be strategically employed to regulate martensitic transformations, transforming them from typical sharp first-order transitions into broadly smeared continuous transitions. This modification results in quasi-linear superelasticity with an exceptionally low apparent Young’s modulus, as well as Invar and Elinvar anomalies. The second example showcases how microCMs can be harnessed to activate various solid-state phase-transformation mechanisms in distinct locations, including congruent transformation, pseudospinodal decomposition, and nucleation-and-growth, leading to microstructurally modulated materials with excellent comprehensive mechanical properties. These studies challenge the conventional view of microCMs as unwanted byproducts, demonstrating their potential as a valuable resource for designing alloys with outstanding characteristics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. M. Warmuzek, W. Ratuszek, G. Sek-Sas, Mater. Charact. 54, 31 (2005)

    Article  CAS  Google Scholar 

  2. G.S. Cole, Metall. Trans. 2, 357 (1971)

    Article  CAS  Google Scholar 

  3. K. Lu, Science 328, 319 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. E. Ma, T. Zhu, Mater. Today 20, 323 (2017)

    Article  CAS  Google Scholar 

  5. S. Ogata, J. Li, S. Yip, Science 298, 807 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. J.M. Zhu, Y.P. Gao, D. Wang, J. Li, T.Y. Zhang, Y.Z. Wang, Mater. Horiz. 6(3), 515 (2019)

    Article  CAS  Google Scholar 

  7. X.Y. Li, L. Lu, J.G. Li, X. Zhang, H.J. Gao, Nat. Rev. Mater. 5, 706 (2020)

    Article  CAS  Google Scholar 

  8. M.Y. Hao, P. Li, X.X. Li, T.L. Zhang, D. Wang, Q.Y. Sun, L.B. Liu, J.S. Li, Y.Y. Cui, R. Yang, D.S. Xu, J. Mater. Sci. Technol. 124, 150 (2022)

    Article  CAS  Google Scholar 

  9. Y.L. Wang, M.Y. Hao, D.A. Li, P. Li, Q.L. Liang, D. Wang, Y.F. Zheng, Q.Y. Sun, Y.Z. Wang, Mater. Sci. Eng. A 829, 142117 (2022)

    Article  CAS  Google Scholar 

  10. M.X. Fang, Y.C. Ji, Y. Ni, W.J. Wang, H.M. Zhang, X.F. Wang, A.D. Xiao, T.Y. Ma, S. Yang, X.B. Ren, Phys. Rev. Lett. 130, 116102 (2023)

    Article  CAS  PubMed  Google Scholar 

  11. K. Otsuka, X.B. Ren, Intermetallics 7, 511 (1999)

    Article  CAS  Google Scholar 

  12. S.A. Shabalovskaya, Bio-Med. Mater. Eng. 6, 267 (1996)

    Article  CAS  Google Scholar 

  13. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Science 300, 464 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007)

    Article  Google Scholar 

  15. E. Ma, J. Ding, Mater. Today 19, 568 (2016)

    Article  CAS  Google Scholar 

  16. I. Steinbach, Model. Simul. Mater. Sci. Eng. 17, 073001 (2009)

    Article  Google Scholar 

  17. Y.H. Zhao, H. Xing, L.J. Zhang, H.B. Huang, D.K. Sun, X.L. Dong, Y.X. Shen, J.C. Wang, Acta Metall. Sin. (Engl. Lett.) 36, 1749 (2023)

    Article  Google Scholar 

  18. Y.Z. Wang, J. Li,  Acta Mater. 58, 1212 (2010)

    Article  CAS  Google Scholar 

  19. L.Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002)

    Article  CAS  Google Scholar 

  20. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54, 397 (2009)

    Article  CAS  Google Scholar 

  21. M. Long, H.J. Rack, Biomaterials 19, 1621 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. M. Niinomi, M. Nakai, Int. J. Biomater. 2011, 836587 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. Frenkel, Z. Phys. 37, 572 (1926)

    Article  Google Scholar 

  24. J. Li, MRS Bull. 32(2), 151 (2007)

    Article  CAS  Google Scholar 

  25. J.W. Christian, G.B. Olson, M. Cohen, J. Phys. IV France 05, C8 (1995)

    Article  Google Scholar 

  26. K. Ōtsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  27. E.K.H. Salje, Annu. Rev. Mater. Res. 42(42), 265 (2012)

    Article  CAS  Google Scholar 

  28. J.M. Zhu, D. Wang, Y.P. Gao, T.Y. Zhang, Y.Z. Wang, Mater. Today 33, 17 (2020)

    Article  Google Scholar 

  29. J.M. Zhu, Y.P. Gao, D. Wang, T.Y. Zhang, Y.Z. Wang, Acta Mater. 130, 196 (2017)

    Article  CAS  Google Scholar 

  30. J.M. Zhu, H.H. Wu, X.S. Yang, H. Huang, T.Y. Zhang, Y.Z. Wang, S.Q. Shi, Acta Mater. 181, 99 (2019)

    Article  CAS  Google Scholar 

  31. Y.T. Su, C.X. Liang, X. Sun, H.L. Zhang, Q.L. Liang, Y.F. Zheng, Y.L. Hao, R. Yang, D. Wang, D. Banerjee, Y.Z. Wang, Acta Mater. 246, 118697 (2023)

    Article  CAS  Google Scholar 

  32. D. Wang, S. Hou, Y. Wang, X.D. Ding, S. Ren, X.B. Ren, Y.Z. Wang, Acta Mater. 66, 349 (2014)

    Article  CAS  Google Scholar 

  33. D. Wang, Q.L. Liang, S.S. Zhao, P.Y. Zhao, T.L. Zhang, L.S. Cui, Y.Z. Wang, Acta Mater. 164, 99 (2019)

    Article  CAS  Google Scholar 

  34. L.X. Zhang, D. Wang, X.B. Ren, Y.Z. Wang, Sci. Rep. 5, 11477 (2015)

    Article  CAS  Google Scholar 

  35. Y.L. Hao, H.L. Wang, T. Li, J.M. Cairney, A.V. Ceguerra, Y.D. Wang, Y. Wang, D. Wang, E.G. Obbard, S.J. Li, R. Yang, J. Mater. Sci. Technol. 32, 705 (2016)

    Article  CAS  Google Scholar 

  36. Q. Liang, Y.F. Zheng, D. Wang, Y.L. Hao, R. Yang, Y.Z. Wang, H.L. Fraser, Scr. Mater. 158, 95 (2019)

    Article  CAS  Google Scholar 

  37. Q.L. Liang, Z. Kloenne, Y.F. Zheng, D. Wang, S. Antonov, Y.P. Gao, Y.L. Hao, R. Yang, Y.Z. Wang, H.L. Fraser, Scr. Mater. 177, 181 (2020)

    Article  CAS  Google Scholar 

  38. Q.L. Liang, D. Wang, Y.F. Zheng, S.S. Zhao, Y.P. Gao, Y.L. Hao, R. Yang, D. Banerjee, H.L. Fraser, Y.Z. Wang, Acta Mater. 186, 415 (2020)

    Article  CAS  Google Scholar 

  39. H.L. Wang, Y.L. Hao, S.Y. He, T. Li, J.M. Cairney, Y.D. Wang, Y. Wang, E.G. Obbard, F. Prima, K. Du, S. Li, R. Yang, Acta Mater. 135, 330 (2017)

    Article  CAS  Google Scholar 

  40. H.L. Wang, S.A.A. Shah, Y.L. Hao, F. Prima, T. Li, J.M. Cairney, Y.D. Wang, Y. Wang, E.G. Obbard, S.J. Li, R. Yang, J. Alloys Compd. 700, 155 (2017)

    Article  CAS  Google Scholar 

  41. K. Kadirvel, S.R. Koneru, Y.Z. Wang, Scr. Mater. 214, 114657 (2022)

    Article  CAS  Google Scholar 

  42. T. Inamura, J.I. Kim, H.Y. Kim, H. Hosoda, K. Wakashima, S. Miyazaki, Philos. Mag. 87, 3325 (2007)

    Article  CAS  Google Scholar 

  43. H.Y. Kim, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Mater. Sci. Eng. A 438, 839 (2006)

    Article  Google Scholar 

  44. K. Otsuka, X. Ren, Prog. Mater. Sci. 50, 511 (2005)

    Article  CAS  Google Scholar 

  45. K. Tsuchiya, H. Sato, S. Edo, K. Marukawa, M. Umemoto, Mater. Sci. Eng. A 285, 353 (2000)

    Article  Google Scholar 

  46. D. Banerjee, J.C. Williams, Acta Mater. 61, 844 (2013)

    Article  CAS  Google Scholar 

  47. Y.F. Zheng, R.E.A. Williams, S.Y. Nag, R. Banerjee, H.L. Fraser, D. Banerjee, Scr. Mater. 116, 49 (2016)

    Article  CAS  Google Scholar 

  48. S. Sarkar, X.B. Ren, K. Otsuka, Phys. Rev. Lett. 95, 205702 (2005)

    Article  PubMed  Google Scholar 

  49. D. Wang, Y.Z. Wang, Z. Zhang, X.B. Ren, Phys. Rev. Lett. 105, 205702 (2010)

    Article  PubMed  Google Scholar 

  50. D. Wang, Y.C. Ji, X.B. Ren, Y.Z. Wang, Annu. Rev. Mater. Res. 52, 159 (2022)

    Article  CAS  Google Scholar 

  51. J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, G. Eggeler, Acta Mater. 58, 3444 (2010)

    Article  CAS  Google Scholar 

  52. D. Schryvers, W. Tirry, Z.Q. Yang, Mater. Sci. Eng. A 438, 485 (2006)

    Article  Google Scholar 

  53. T.J. Dong, T.F. Zhao, C.X. Liang, D. Wang, Shape Mem. Superelast. 9, 321 (2023)

    Article  Google Scholar 

  54. Y.T. Zhu, X.L. Wu, Prog. Mater. Sci. 131, 101019 (2023)

    Article  CAS  Google Scholar 

  55. A. Boyne, D. Wang, R.P. Shi, Y. Zheng, A. Behera, S. Nag, J.S. Tiley, H.L. Fraser, R. Banerjee, Y. Wang, Acta Mater. 64, 188 (2014)

    Article  CAS  Google Scholar 

  56. D. Wang, R.P. Shi, Y.F. Zheng, R. Banerjee, H.L. Fraser, Y.Z. Wang, JOM 66(7), 1287 (2014)

    Article  CAS  Google Scholar 

  57. Y. Ni, A.G. Khachaturyan, Nat. Mater. 8, 410 (2009)

    Article  CAS  PubMed  Google Scholar 

  58. T.L. Zhang, D. Wang, Y.Z. Wang, Acta Mater. 196, 409 (2020)

    Article  CAS  Google Scholar 

  59. D. Wu, M.Y. Hao, T.L. Zhang, Z. Wang, J. Wang, G.H. Rao, L.G. Zhang, C.Y. Ding, K.C. Zhou, L.B. Liu, D. Wang, Y.Z. Wang, Acta Mater. 257, 119182 (2023)

    Article  CAS  Google Scholar 

  60. W.W. Sun, Y.X. Wu, S.C. Yang, C.R. Hutchinson, Scr. Mater. 146, 60 (2018)

    Article  CAS  Google Scholar 

  61. T.R. Jackson, H. Liu, N.M. Patrikalakis, E.M. Sachs, M.J. Cima, Mater. Des. 20, 63 (1999)

    Article  Google Scholar 

  62. R. Banerjee, P.C. Collins, D. Bhattacharyya, S. Banerjee, H.L. Fraser, Acta Mater. 51, 3277 (2003)

    Article  CAS  Google Scholar 

  63. G. Topalov, G. Ganske, E. Lefterova, U. Schnakenberg, E. Slavcheva, Int. J. Hydrogen Energy 36, 15437 (2011)

    Article  CAS  Google Scholar 

  64. T.L. Zhang, Z.H. Huang, T. Yang, H.J. Kong, J.H. Luan, A.D. Wang, D. Wang, W. Kuo, Y.Z. Wang, C.T. Liu, Science 374(6566), 478 (2021)

    Article  CAS  PubMed  Google Scholar 

  65. D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing: Film Formation, Adhesion, Surface Preparation and Contamination Control (Noyes Publications, Westwood, 1998)

    Google Scholar 

  66. M.A. Herman, H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status, 2nd., rev. updated edn., Springer Series in Materials Science 7 (Springer, Berlin, 1996)

    Book  Google Scholar 

  67. A.E. Danks, S.R. Hall, Z. Schnepp,  Mater. Horiz. 3, 91 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Y.W. acknowledges the support from the National Science Foundation under Grant No. DMR-2333551. D.W. acknowledges the support from the National Natural Science Foundation of China (NSFC) (Grant Nos. 52171012 and 51931004), the National Key Research and Development Program of China (Grant No. 2021YFB3702603), and 111 project (BP2018008). J.Z. acknowledges the support from the National Natural Science Foundation of China (Grant No. 12372152), Qilu Young Talent Program of Shandong University, Zhejiang Lab Open Research Project (No. K2022PE0AB05), and Shandong Provincial Natural Science Foundation (ZR2023MA058) and Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515011819, 2024A1515012469). T.Z. acknowledges the support R9892 startup funding from The Hong Kong University of Science and Technology.

Funding

Funding was provided by the National Science Foundation under Grant No. DMR-2333551 (Y.W.), the National Natural Science Foundation of China (Grant Nos. 52171012, 51931004, and 12372152) (D.W.), the National Natural Science Foundation of China (Grant No. 12372152), the support R9892 startup funding from The Hong Kong University of Science and Technology (T.L.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. designed this paper, and all authors contributed to the writing and revision of the manuscript.

Corresponding author

Correspondence to Yunzhi Wang.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhu, J., Zhang, T. et al. Design of compositionally modulated materials for controlled strain release during deformation through phase-field simulations. MRS Bulletin (2024). https://doi.org/10.1557/s43577-024-00721-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43577-024-00721-w

Keywords

Navigation