Skip to main content
Log in

Self-healing mechanisms for Ge–Sb–S chalcogenide glasses upon gamma irradiation

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

We report atomistic mechanisms that directly correlate the time-dependent optical responses of bulk Ge23Sb7S70 chalcogenide glasses to their metastable structural defects created and subsequently annihilated following gamma irradiation. These defects are characterized by an irradiation-induced increase in the concentration of edge-shared GeS4/2 tetrahedra bonding units, which gradually decreases to a pre-irradiation level during recovery, thus illustrating the glass’ metastable behavior. This time-dependent structural change gives rise to the evolution of the glass’s mass density that correspondingly induces a change and subsequent relaxation of linear refractive index and bandgap energy. Concurrent with this evolution in linear optical properties, the glass’ nonlinear response is found to be unaffected, likely due to a counter effect associated with the glass network’s free electrons.

Graphical abstract

Impact statement

Our work is the first study to employ a combined theoretical-experimental approach to the quantitative processing–structure–property relationship correlating the time-dependent structural and linear/nonlinear optical responses of chalcogenide Ge–Sb–S bulk glasses to their metastable topological coordination defects. These defects are created upon gamma-ray exposure and subsequently undergo relaxation at room temperature. The novelty of our study is that multifaceted aspects of such a key infrared chalcogenide glass, including optical, electronic, morphological, chemical, and microstructural properties, were monitored and cross-correlated as a function of time following gamma irradiation in order to identify origins behind the material system’s behavior as compared to base unirradiated material. This is, to our knowledge, the first-ever integrated approach (summarizing pre- and postexposure properties on the same samples) to the phenomenon. The behavior in metastable bulk chalcogenide glasses serves as a key cornerstone that will enable the material system to be deployed as robust, reversible radiation sensors in extreme environments such as space and ground-based radioactive facilities where gamma ray is characteristically abundant. Findings in our paper may shed light on the lingering question on the microscopic origin behind the self-healing process in chalcogenide glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, J. Albert, Nat. Commun. 7, 13371 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. B.J. Eggleton, B. Luther-Davies, K. Richardson, Nat. Photonics 5, 141 (2011)

    Article  CAS  Google Scholar 

  3. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, K. Richardson, Opt. Express 15, 2307 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. M. Kang, L. Sisken, C. Lonergan, A. Buff, A. Yadav, C. Goncalves, C. Blanco, P. Wachtel, J.D. Musgraves, A.V. Pogrebnyakov, E. Baleine, C. Rivero-Baleine, T.S. Mayer, C.G. Pantano, K.A. Richardson, Adv. Opt. Mater. 10, 2000150 (2020)

    Article  Google Scholar 

  5. L. Sisken, M. Kang, J.M. Veras, C. Smith, A. Buff, A. Yadav, D. McClane, C. Blanco, C. Rivero-Baleine, T.S. Mayer, K. Richardson, Adv. Funct. Mater. 29, 1902217 (2019)

    Article  Google Scholar 

  6. A. Lepicard, F. Bondu, M. Kang, L. Sisken, A. Yadav, F. Adamietz, V. Rodriguez, K. Richardson, M. Dussauze, Sci. Rep. 8, 7388 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  7. A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chamma, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, K. Richardson, Phys. Chem. Glasses Eur. J. Glass Sci. Tech. B 58(4), 115 (2017)

    Article  Google Scholar 

  8. M. Kang, A.M. Swisher, A.V. Pogrebnyanov, L. Liu, A. Kirk, S. Aiken, L. Sisken, C. Lonergan, J. Cook, T. Malendevych, F. Kompan, I. Divliansky, L.B. Glebov, M.C. Richardson, C. Rivero-Baleine, C.G. Pantano, T.S. Mayer, K. Richardson, Adv. Mater. 30, 1803628 (2018)

    Article  Google Scholar 

  9. B.-U. Sohn, M. Kang, J. Choi, A.M. Agarwal, K. Richardson, D.T.H. Tan, APL Photonics 4, 036102 (2019)

    Article  Google Scholar 

  10. I. Mingareev, M. Kang, M. Truman, J. Qin, G. Yin, J. Hu, C.M. Schwarz, I.B. Murray, M.C. Richardson, K.A. Richardson, Opt. Laser Technol. 126, 106058 (2020)

    Article  CAS  Google Scholar 

  11. M. Kang, L. Sisken, J. Cook, C. Blanco, M.C. Richardson, I. Mingareev, K. Richardson, Opt. Mater. Express 8, 2722 (2018)

    Article  CAS  Google Scholar 

  12. Y. Zhang, J.B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M.Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Rios, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, J. Hu, Nat. Commun. 10, 4279 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  13. B. Shen, H. Lin, S.S. Azadeh, J. Nojic, M. Kang, F. Merget, K.A. Richardson, J. Hu, J. Witzens, ACS Photonics 7, 499 (2020)

    Article  CAS  Google Scholar 

  14. S. Novak, P.T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P.G. Kik, W. Deng, K. Richardson, ACS Appl. Mater. Interfaces 9, 26990 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Zha, P.T. Lin, L. Kimerling, A. Agarwal, C.B. Arnold, ACS Photonics 1, 153 (2014)

    Article  CAS  Google Scholar 

  16. S.M. El-Sayed, Nucl. Instrum. Methods Phys. Res. B 225, 535 (2004)

    Article  CAS  Google Scholar 

  17. F. Xia, S. Baccaro, D. Zhao, M. Falconieri, G. Chen, Nucl. Instrum. Methods Phys. Res. B 234, 525 (2005)

    Article  CAS  Google Scholar 

  18. G.A.M. Amin, J. Gregus, M. Zahoran, Mater. Sci. Semicond. Process. 15, 455 (2012)

    Article  CAS  Google Scholar 

  19. O. Shpotyuk, M. Shpotyuk, S. Ubizskii, Radiat. Appl. 2(2), 94 (2017)

    Google Scholar 

  20. Y. Shpotyuk, A. Ingram, J. Filipecki, M. Hyla, Phys. Status Solidi C 8, 3163 (2011)

    Article  CAS  Google Scholar 

  21. B. Butkiewicz, R. Golovchak, A. Kovalskiy, O. Shpotyuk, M. Vakiv, Radiat. Effect Defect Sci. 153, 211 (2001)

    Article  CAS  Google Scholar 

  22. A.P. Kovalskiy, H. Jain, A.C. Miller, R.Y. Golovchak, O.I. Shpotyuk, J. Phys. Chem. B 110, 22930 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. T. Kavetskyy, I. Kaban, O. Shpotyuk, W. Hoyer, V. Tsmots, J. Phys. Conf. Ser. 289, 012007 (2011)

    Article  Google Scholar 

  24. S. Novak, V. Singh, C. Monmeyran, A. Ingram, Z. Han, H. Lin, N. Borodinov, N. Patel, Q. Du, J. Hu, I. Luzinov, R. Golovchak, A. Agarwal, K. Richardson, J. Non-Cryst. Solids 455, 29 (2017)

    Article  CAS  Google Scholar 

  25. P. Lucas, A. Doraiswamy, E.A. King, J. Non-Cryst. Solids 332, 35 (2003)

    Article  CAS  Google Scholar 

  26. Q. Du, Y. Huang, O. Ogbuu, W. Zhang, J. Li, V. Singh, A.M. Agarwal, J. Hu, Opt. Lett. 42, 587 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. Q. Du, J. Michon, B. Li, D. Kita, D. Ma, H. Zuo, S. Yu, T. Gu, A. Agarwal, M. Li, J. Hu, Photonics Res. 8(2), 186 (2020)

    Article  CAS  Google Scholar 

  28. T. Anderson, L. Petit, N. Carlie, J. Choi, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, M. Richardson, Opt. Express 16, 20081 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. B.-U. Sohn, C. Monmeyran, L.C. Kimerling, A.M. Agarwal, D.T.H. Tan, Appl. Phys. Lett. 111, 091902 (2017)

    Article  Google Scholar 

  30. J.W. Choi, Z. Han, B.-U. Sohn, G.F.R. Chen, C. Smith, L.C. Kimerling, K.A. Richardson, A.M. Agarwal, D.T.H. Tan, Sci. Rep. 6, 39234 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X.L. Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, L. Vivien, Photonics Res. 6, B37 (2018)

    Article  CAS  Google Scholar 

  32. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L.C. Kimerling, K. Richardson, J. Solid State Chem. 182, 2756 (2009)

    Article  CAS  Google Scholar 

  33. L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, G. Boudebs, Opt. Lett. 31, 1495 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. M. Waldmann, J.D. Musgraves, K. Richardson, C.B. Arnold, J. Mater. Chem. 22, 17848 (2012)

    Article  CAS  Google Scholar 

  35. C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, Q. Nie, Appl. Phys. B 116, 653 (2014)

    Article  CAS  Google Scholar 

  36. R. Naik, S. Jena, R. Ganesan, N.K. Sahoo, Laser Phys. 25, 1 (2015)

    Article  Google Scholar 

  37. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N. Lu, J. Hu, Nat. Photonics 8, 643 (2014)

    Article  CAS  Google Scholar 

  38. H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. Huang, R. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, J. Hu, Nat. Photonics 11, 798 (2017)

    Article  CAS  Google Scholar 

  39. Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, J. Hu, Opt. Lett. 41, 3090 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. I. Watanabe, M. Ishikawa, T. Shimizu, J. Phys. Soc. Jpn. 45, 1603 (1978)

    Article  CAS  Google Scholar 

  41. P. Su, Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L.C. Kimerling, J. Hu, A. Agarwal, Appl. Phys. Lett. 114, 051103 (2019)

    Article  Google Scholar 

  42. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L.C. Kimerling, J. Lightwave Technol. 27(24), 5240 (2009)

    Article  CAS  Google Scholar 

  43. J. Mao, K. Yang, X. Chen, S. Zhu, G. Zhang, F. Yang, X. Zhang, K. Qin, T. Wang, H. Peng, J. Am. Ceram. Soc. 105, 5178 (2022)

    Article  CAS  Google Scholar 

  44. M.A. Ouis, W.M. Abd-Allah, O.I. Sallam, Appl. Phys. A 128, 389 (2022)

    Article  CAS  Google Scholar 

  45. M. Kang, R.S. Goldman, Appl. Phys. Rev. 6, 041307 (2019)

    Article  CAS  Google Scholar 

  46. M. Kang, J.H. Wu, S. Huang, M.V. Warren, Y. Jiang, E.A. Robb, R.S. Goldman, Appl. Phys. Lett. 101, 082101 (2012)

    Article  Google Scholar 

  47. Q. Wei, J. Lian, W. Lu, L. Wang, Phys. Rev. Lett. 100, 076103 (2008)

    Article  PubMed  Google Scholar 

  48. D.R. Penn, Phys. Rev. 128, 2093 (1962)

    Article  CAS  Google Scholar 

  49. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, R. Wang, Laser Photon. Rev. 11, 1700005 (2017)

    Article  Google Scholar 

  50. R.A. Street, N.F. Mott, Phys. Rev. Lett. 35, 1293 (1975)

    Article  CAS  Google Scholar 

  51. H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977)

    Article  CAS  Google Scholar 

  52. K. Jackson, A. Briley, S. Grossman, D.V. Porezag, M.R. Pederson, Phys. Rev. B 60, R14985 (1999)

    Article  CAS  Google Scholar 

  53. C. Lin, Z. Li, L. Ying, Y. Xu, P. Zhang, S. Dai, T. Xu, Q. Nie, J. Phys. Chem. C 116, 5862 (2012)

    Article  CAS  Google Scholar 

  54. I. Pethes, V. Nazabal, J. Ari, I. Kaban, J. Darpentigny, E. Welter, O. Gutowski, B. Bureau, Y. Messaddeq, P. Jovari, J. Alloys Compd. 774, 1009 (2019)

    Article  CAS  Google Scholar 

  55. A. Chrissanthopoulos, P. Jovari, I. Kaban, S. Gruner, T. Kavetskyy, J. Borc, W. Wang, J. Ren, G. Chen, S.N. Yannopoulos, J. Solid State Chem. 192, 7 (2012)

    Article  CAS  Google Scholar 

  56. K.E. Oughstun, N.A. Cartwright, Opt. Express 11, 1541 (2003)

    Article  PubMed  Google Scholar 

  57. R.F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, New York, 1996)

    Google Scholar 

  58. J.K. Wahlstrand, S. Zahedpour, A. Bahl, M. Kolesik, H.M. Milchberg, Phys. Rev. Lett. 120, 183901 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. T.G. Edwards, S. Sen, J. Phys. Chem. B 115, 4307 (2011)

    Article  CAS  PubMed  Google Scholar 

  60. K. Itoh, J. Phys. Chem. Solids 103, 109 (2017)

    Article  CAS  Google Scholar 

  61. Y. Lee, Y.W. Choi, K. Lee, C. Song, P. Ercius, M.L. Cohen, K. Kim, A. Zettl, ACS Nano 17, 8734 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. A.W. Mao, B.G. Aitken, R.E. Youngman, D.C. Kaseman, S. Sen, J. Phys. Chem. B 117, 16594 (2013)

    Article  CAS  PubMed  Google Scholar 

  63. A.W. Mao, B.G. Aitken, S. Sen, J. Non-Cryst. Solids 369, 38 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Caraccio, R. Sharma, D. Wiedeman, and R. Gaume at the University of Central Florida for specimen preparation and useful discussions associated with analyses. We also thank R. Golovchak at Austin Peay State University, T. Loretz at Computer Engineering Service, and R. Loretz at Nuclear Physics Consultant for useful discussions related to the irradiation-induced structural modifications and glass’ thermal behavior.

Funding

This work was supported by the Defense Threat Reduction Agency under Contract No. HDTRA 1-13-1-0001. Singapore University of Technology and Design acknowledges funding from the Ministry of Education ACRF Tier 2 Grant and the National Research Foundation Competitive Research Grant.

Author information

Authors and Affiliations

Authors

Contributions

M.K. and K.A.R. conceived the project. C.B., C.G., and A.Y. fabricated samples. Q.D., D.M., and R.P. carried out gamma irradiation. M.K., B.-U.S., L.S., C.A., A.Z., P.E.L., and J.L. performed characterizations and analyses. S.N., C.M.S., I.L., J.H., A.M.A., and D.T.H.T. provided useful comments. M.K. drafted and supervised the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Myungkoo Kang.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5406 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Sohn, BU., Du, Q. et al. Self-healing mechanisms for Ge–Sb–S chalcogenide glasses upon gamma irradiation. MRS Bulletin (2024). https://doi.org/10.1557/s43577-024-00693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43577-024-00693-x

Keywords

Navigation