Skip to main content
Log in

Exploring the impact of sulfur-antimony incorporation on the radiation shielding, structural, physical, and electrical properties of (S3Sb2)x(S2Ge)100−x chalcogenide composites

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Chalcogenide composites, a category of non-oxide glasses, have shown great potential in various applications such as optoelectronics, thermal imaging, memory-switching devices, lasers, and more. Owing to the distinctive physical properties inherent in chalcogenide glasses, these materials have garnered significant interest across various technological domains. This study aims to analyze the impact of incorporating sulfur (S) and antimony (Sb) into (S3Sb2)x(S2Ge)100−x:x = 10, 20, 30 chalcogenide composites, assessing their radiation shielding, structural, physical, and electrical properties. Three distinct composites, designated as SSbGe-10, SSbGe-20, and SSbGe-30, are irradiated with gamma photons across an energy range of 0 to 15 MeV. The assessment of the radiation shielding attributes is conducted through the utilization of the FLUKA Monte Carlo (MC) Code. Phillips and Thorpe’s theory is employed to analytically estimate structural and physical attributes such as Coordination Number (CN), bond-bending constraints (NS), bond-stretching constraints (NC), constraints Number (Ncons), Floppy mode (F), and stoichiometry (R). The electrical features of the provided specimens are analyzed through the utilization of the effective electron conductivity (Ceff), as ascertained by the Phy-X: PSD software. The findings indicate that the augmentation of the x value within the range of 10–30 wt.% positively augments the gamma photon shielding efficacy of the composite materials. Both NS and NC demonstrate diminishing patterns, encompassing the range of 2.64 to 2.575 and 7.56 to 7.30, respectively. Additionally, the stoichiometry (R > 1) for the investigated samples indicates that the chosen glasses are rich chalcogenide composites. The exhaustive examination of the physical, radiation shielding, and electrical characteristics of the prepared chalcogenide glasses provides valuable insights for subsequent investigations into various chalcogenide glass formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statements

Relevant research data are included in the text of the work.

References

  • Abouhaswa, A.S., Zakaly, H.M.H., Issa, S.A.M., Rashad, M., Pyshkina, M., Tekin, H.O., El-Mallawany, R., Mostafa, M.Y.A.: Synthesis, physical, optical, mechanical, and radiation attenuation properties of TiO2–Na2O–Bi2O3–B2O3 glasses. Ceram. Int. 47, 185–204 (2021). https://doi.org/10.1016/j.ceramint.2020.08.122

    Article  Google Scholar 

  • Ahmed Simon, A., Badamchi, B., Subbaraman, H., Sakaguchi, Y., Jones, L., Kunold, H., van Rooyen, J., Mitkova, M.: Introduction of chalcogenide glasses to additive manufacturing: Nanoparticle ink formulation, inkjet printing, and phase change devices fabrication. Sci. Rep. 11, 14311 (2021). https://doi.org/10.1038/s41598-021-93515-y

    Article  ADS  Google Scholar 

  • Alalawi, A., Al-Buriahi, M.S., Sayyed, M.I., Akyildirim, H., Arslan, H., Zaid, M.H.M., Tonguc, B.T.: Influence of lead and zinc oxides on the radiation shielding properties of tellurite glass systems. Ceram. Int. 46, 17300–17306 (2020). https://doi.org/10.1016/j.ceramint.2020.04.017

    Article  Google Scholar 

  • Al-Buriahi, M.S.: Radiation shielding performance of a borate-based glass system doped with bismuth oxide. Radiat. Phys. Chem. 207, 110875 (2023). https://doi.org/10.1016/j.radphyschem.2023.110875

    Article  Google Scholar 

  • Al-Buriahi, M.S., Gaikwad, D.K., Hegazy, H.H., Sriwunkum, C., Algarni, H.: Newly developed glasses containing Si/Cd/Li/Gd and their high performance for radiation applications: Role of Er2O3. J. Mater. Sci. Mater. Electron. 32, 9440–9451 (2021a). https://doi.org/10.1007/s10854-021-05608-z

    Article  Google Scholar 

  • Al-Buriahi, M.S., Gaikwad, D.K., Hegazy, H.H., Sriwunkum, C., Neffati, R.: Fe-based alloys and their shielding properties against directly and indirectly ionizing radiation by using FLUKA simulations. Phys. Scr. 96, 045303 (2021b). https://doi.org/10.1088/1402-4896/abdd52

    Article  ADS  Google Scholar 

  • Al-Buriahi, M.S., Alrowaili, Z.A., Eke, C., Alomairy, S., Alshahrani, B., Bejaoui, I., Sriwunkum, C.: An important role of Ba2+, Sr2+, Mg2+, and Zn2+ in the radiation attenuation performance of CFCBPC bioactive glasses. J. Aust. Ceram. Soc. 58, 461–473 (2022a). https://doi.org/10.1007/s41779-022-00704-7

    Article  Google Scholar 

  • Al-Buriahi, M.S., Eke, C., Alrowaili, Z.A., Al-Baradi, A.M., Kebaili, I., Tonguc, B.T.: Optical properties and radiation shielding performance of tellurite glasses containing Li2O and MoO3. Optik (Stuttg). 249, 168257 (2022b). https://doi.org/10.1016/j.ijleo.2021.168257

    Article  ADS  Google Scholar 

  • Al-Ghamdi, H., Al-Omari, S., Alsaif, N.A.M., Afaneh, F., Zakaly, H.M.H., Issa, S.A.M., Elsad, R.A., Khattari, Z.Y., Rammah, Y.S., Mesalam, Y.I.: Influence of [Na2O]/[CuO] on the physical and photon attenuation capacities of cupric sodium phosphate glasses: A comparative study. Opt. Quantum Electron. 56, 1–13 (2024). https://doi.org/10.1007/s11082-023-05679-8

    Article  Google Scholar 

  • Alharshan, G.A., Eke, C., Al-Buriahi, M.S.: Radiation-transmission and self-absorption factors of P2O5 – SrO – Sb2O3 glass system. Radiat. Phys. Chem. 193, 109938 (2022). https://doi.org/10.1016/J.RADPHYSCHEM.2021.109938

    Article  Google Scholar 

  • Aljewaw, O.B., Karim, M.K.A., Kamari, H.M., Zaid, M.H.M., Salim, A.A., Mhareb, M.H.A.: Physical and spectroscopic characteristics of lithium-aluminium-borate glass: Effects of varying Nd2O3 doping contents. J. Non Cryst. Solids 575, 121214 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121214

    Article  Google Scholar 

  • Almisned, G., Akman, F., Abushanab, W.S., Tekin, H.O., Kaçal, M.R., Issa, S.A.M., Polat, H., Oltulu, M., Ene, A., Zakaly, H.M.H.: Novel Cu/Zn reinforced polymer composites: Experimental characterization for Radiation Protection Efficiency (RPE) and shielding properties for alpha, proton, neutron, and gamma radiations. Polym. 13, 3157 (2021). https://doi.org/10.3390/POLYM13183157

    Article  Google Scholar 

  • Aly, K.A.: Optical properties of Ge-Se-Te wedge-shaped films by using only transmission spectra. J. Non Cryst. Solids 355, 1489–1495 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.05.042

    Article  ADS  Google Scholar 

  • Aly, K.A.: On the study of the optical constants for different compositions of Snx(GeSe)100–x thin films in terms of the electronic polarizability, electronegativity and bulk modulus. Appl. Phys. A Mater. Sci. Process. 120, 293–299 (2015). https://doi.org/10.1007/s00339-015-9187-z

    Article  ADS  Google Scholar 

  • Bhuiyan, M.R.A., Alam, M.M., Momin, M.A.: Effect of substrate temperature on the optical properties of thermally evaporated ZnS thin films. Turkish J. Phys. 34, 43–49 (2010). https://doi.org/10.3906/fiz-0902-9

    Article  Google Scholar 

  • Boodaghi Malidarre, R., Akkurt, I.: Evaluation of bioactive borosilicate added Ag glasses in terms of radiation shielding, structural, optical, and electrical properties. SILICON 14, 12371–12379 (2022a). https://doi.org/10.1007/s12633-022-01925-y

    Article  Google Scholar 

  • Boodaghi Malidarre, R., Akkurt, I.: The influence of Nd2O3 on the radiation shielding, physical, mechanical, and acoustic properties of the (75–x)TeO2–15MgO–10Na2O–xNd2O3 glasses as a potent radiation shielding material. Polym. Compos. 43, 5418–5425 (2022b). https://doi.org/10.1002/pc.26844

    Article  Google Scholar 

  • Boodaghi Malidarre, R., Akkurt, I., Zakaly, H.M.H.: Investigation of Ag as chemical modifier in glassy SeTe chalcogenide alloy in terms of radiation shielding, optical, structural, and physical properties. Radiat. Phys. Chem. 204, 110685 (2023). https://doi.org/10.1016/j.radphyschem.2022.110685

    Article  Google Scholar 

  • Boodaghi Malidarre, R., Akkurt, I., Ekmekci, I., Zakaly, H.M.H., Mohammed, H.: The role of La2O3 rare earth (RE) material in the enhancement of the radiation shielding, physical, mechanical and acoustic properties of the tellurite glasses. Radiat. Eff. Defects Solids. (2022). https://doi.org/10.1080/10420150.2022.2113075

  • El Saeedy, H.I., Yakout, H.A., Aly, K.A., Saddeek, Y.B., Dahshan, A., Sidek, H.A.A., Matori, K.A., Zaid, M.H.M., Zakaly, H.M.H.: Synthesis and theoretical characterization of ternary Cux(Ge30Se70)100–x glasses. Results Phys. 23, 104026 (2021). https://doi.org/10.1016/j.rinp.2021.104026

    Article  Google Scholar 

  • Heireche, M.M., Driss Khodja, K., Heireche, L., Benaioun, N.E., Amrani, B.: The effect of Antimony (Sb) additive on the kinetics of glass transition and crystallization of SeM (M=In, Zn) chalcogenide glasses. J. Mater. Environ. Sci. 8, 3303–3312 (2017)

    Google Scholar 

  • Hocde, S., Loréal, O., Sire, O., Boussard-Pledel, C., Bureau, B., Turlin, B., Keirsse, J., Leroyer, P., Lucas, J.: Metabolic imaging of tissues by infrared fiber-optic spectroscopy: An efficient tool for medical diagnosis. J. Biomed. Opt. 9, 404–407 (2004). https://doi.org/10.1117/1.1646415

    Article  ADS  Google Scholar 

  • Houizot, P., Boussard-Plédel, C., Faber, A.J., Cheng, L.K., Bureau, B., Van Nijnatten, P.A., Gielesen, W.L.M., Pereira do Carmo, J., Lucas, J.: Infrared single mode chalcogenide glass fiber for space. Opt. Express. 15, 12529 (2007). https://doi.org/10.1364/oe.15.012529

    Article  ADS  Google Scholar 

  • Hu, Y., Tian, K., Li, T., Zhang, M., Ren, H., Qi, S., Yang, A., Feng, X., Yang, Z.: Mid-infrared nonlinear optical performances of Ge-Sb-S chalcogenide glasses. Opt. Mater. Express 11, 695 (2021). https://doi.org/10.1364/ome.412731

    Article  ADS  Google Scholar 

  • Issa, S.A.M., Susoy, G., Ali, A.M., Tekin, H.O., Saddeek, Y.B., Al-Hajry, A., Algarni, H., Anjana, P.S., Agar, O.: The effective role of La2O3 contribution on zinc borate glasses: Radiation shielding and mechanical properties. Appl. Phys. A Mater. Sci. Process. 125, 867 (2019). https://doi.org/10.1007/s00339-019-3169-5

    Article  ADS  Google Scholar 

  • Khattari, Z.Y., Zakaly, H.M.H., Alrowaily, A.W., Ene, A., Shams, M.S., Issa, S.A.M., Elsad, R.A., Rammah, Y.S.: A comprehensive study on optical, physical, mechanical and radiation shielding properties of calcium bismuth borophosphate glass–ceramics with distinct V2O5 contents. Opt. Quantum Electron. 56, 1–23 (2024). https://doi.org/10.1007/s11082-023-05598-8

    Article  Google Scholar 

  • Malidarre, R.B., Akkurt, I.: Simulation of neutron and gamma radiation shielding properties of KNN-LMN lead-free relaxor ceramics. J. Aust. Ceram. Soc. 59, 137–143 (2023). https://doi.org/10.1007/s41779-022-00819-x

    Article  Google Scholar 

  • Micoulaut, M., Pethes, I., Jóvári, P., Pusztai, L., Krbal, M., Wágner, T., Prokop, V., Michalik, S., Ikeda, K., Kaban, I.: Structural properties of chalcogenide glasses and the isocoordination rule: Disentangling effects from chemistry and network topology. Phys. Rev. B. 106, 14206 (2022). https://doi.org/10.1103/PhysRevB.106.014206

    Article  ADS  Google Scholar 

  • Raj, R., Lohia, P., Dwivedi, D.K., Mahmoud, M.H., Akhtar, M.S.: Nanocomposite (S3Sb2) x(S2Ge)100-xchalcogenide glasses: Structural and physical properties. Emerg. Mater. Res. 11, 185–192 (2022). https://doi.org/10.1680/jemmr.21.00166

    Article  Google Scholar 

  • Rao, M., Ravindranadh, K., Ferdinand, A.C., Shekhawat, M.S.: Physical properties and applications of chalcogenide glasses - a brief study. Int. J. Adv. Pharmacy Biol. Chem. 2, 368–371 (2013)

    Google Scholar 

  • Sekhar, K.C., Hameed, A., Narsimlu, N., Alzahrani, J.S., Alothman, M.A., Olarinoye, I.O., Al-Buriahi, M.S., Shareefuddin, M.: Synthesis, optical, structural, and radiation transmission properties of PbO/Bi2O3/B2O3/Fe2O3 glasses: An experimental and in silico study. Opt. Mater. (Amst). 117, 111173 (2021). https://doi.org/10.1016/j.optmat.2021.111173

  • Sengul, A., Akhtar, M.S., Akkurt, I., Malidarre, R.B., Er, Z., Ekmekci, I.: Gamma-neutron shielding parameters of (S3Sb2)x(S2Ge)100–x chalcogenide glasses nanocomposite. Radiat. Phys. Chem. 204, 110675 (2023). https://doi.org/10.1016/j.radphyschem.2022.110675

    Article  Google Scholar 

  • Thorpe, M.F.: Continuous deformations in random networks. J. Non Cryst. Solids 57, 355–370 (1983). https://doi.org/10.1016/0022-3093(83)90424-6

    Article  ADS  Google Scholar 

  • Wágner, T., Macková, A., Peřina, V., Rauhala, E., Seppälä, A., Kasap, S.O., Frumar, M., Vlček, M., Vlček, M.: The study of photo- and thermally-induced diffusion and dissolution of Ag in As30S70 amorphous films and its reaction products. J. Non Cryst. Solids 299–302, 1028–1032 (2002). https://doi.org/10.1016/S0022-3093(01)01069-9

    Article  ADS  Google Scholar 

  • Yaacob, S.N.S., Sahar, M.R., Mohd-Noor, F., Shamsuri, W.N.W., Zain, S.K.M., Jan, N.A.M., Omar, M.F., Jupri, S.A., Aziz, S.M., Alqarni, A.S.: The effect of Nd2O3 content on the properties and structure of Nd3+ doped TeO2–MgO–Na2O- glass. Opt. Mater. (Amst). 111, 110588 (2021). https://doi.org/10.1016/j.optmat.2020.110588

  • Zakaly, H.M.H., Issa, S.A.M., Tekin, H.O., Badawi, A., Saudi, H.A., Henaish, A.M.A., Rammah, Y.S.: An experimental evaluation of CdO/PbO-B2O3 glasses containing neodymium oxide: Structure, electrical conductivity, and gamma-ray resistance. Mater. Res. Bull. 111828 (2022). https://doi.org/10.1016/j.materresbull.2022.111828

  • Zhang, X.H., Guimond, Y., Bellec, Y.: Production of complex chalcogenide glass optics by molding for thermal imaging. J. Non-Cryst. Solids. 326, 519–523. North-Holland (2003)

Download references

Acknowledgements

The author is grateful to Princess Norah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R111), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The research partially funded by the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

RBM, IA, NA, HMHZ: Investigation, Conceptualization, Methodology, Software, Validation, Data Curation, Writing-Review and Editing, Visualization, Supervision.

Corresponding author

Correspondence to Hesham M. H. Zakaly.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malidarreh, R.B., Akkurt, I., Almousa, N. et al. Exploring the impact of sulfur-antimony incorporation on the radiation shielding, structural, physical, and electrical properties of (S3Sb2)x(S2Ge)100−x chalcogenide composites. Opt Quant Electron 56, 736 (2024). https://doi.org/10.1007/s11082-024-06381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06381-z

Keywords

Navigation