Skip to main content
Log in

Chemical and architectural intricacy from nanoscale tetrahedra and their analogues

  • Nanoparticle Assemblies of Modern Complexity
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The tetrahedron, as the simplest platonic shape, is a profound building block with the potential to create intricate superstructures. Noteworthy designs utilizing tetrahedral building blocks include the Sierpiński tetrahedron (the most fundamental three-dimensional fractal), a one-dimensional helical structure known as the tetrahelix, and various crystalline and quasicrystalline packings. Historically, the practicality of tetrahedral superstructures has been evident, providing stable, well-defined frameworks for various constructions, including truss bridges, tower cranes, and electricity transmission line pylons. In the field of self-assembled nanocrystal superlattices, tetrahedral nanocrystals, as building blocks, occupy a unique place among all the possible nanoscale particles. Mathematical models, simulation work, and experimental studies using nanocrystals in the laboratory have suggested that self-assembled structures derived from nanoscale tetrahedral building blocks are notably intricate, giving rise to new horizons of high-entropy nanocrystal superlattices. An important implication from previous works is that such tetrahedral nanocrystal superlattices form through highly delicate interparticle interactions, emphasizing the importance of the fine features of these nanocrystals. In this article, we summarize the advances in superlattices assembled from tetrahedral nanocrystals. We first define the tetrahedron and tetrahedron analogues based on Conway’s transformation and graph theory, underscoring their relevance to the crystallization process producing tetrahedral nanocrystals. Then, we showcase previous reports on the synthesis of tetrahedral nanocrystals and the resulting nanocrystal superstructures. Finally, we conclude by offering insights and perspective into the chemical and architectural intricacy that could emerge from tetrahedral nanocrystals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Adapted with permission from Reference 55. © 2006 AAAS. (b) Three-dimensional models demonstrating local packing of NCs within nanosheets from the side (left) and top (right). Adapted with permission from Reference 55. (c) Scanning electron microscopy (SEM) image of chiral twisted ribbons formed from bundles of tetrahelices. Three-dimensional model of twisted ribbon, with close-up to individual tetrahelix unit (inset). Adapted with permission from Reference 56. © 2020 American Chemical Society. (d) Circular dichroism (CD) spectrum for solutions of twisted ribbons, color-coded for solutions with L-, D-, and racemic-cysteine surface ligands. Adapted from Reference 56. (e) Three-dimensional model of twisted ribbon (left), with close-up views to individual tetrahelix units from side (center top) and top (center bottom) views, and atomic model of cysteine interactions between adjacent NCs (right). Adapted from Reference 56. (f) SEM images of left-handed (left) and right-handed (right) pinwheel superlattices (SLs), with 3D models (insets). Adapted with permission from Reference 59. © 2022 Springer Nature. (g) Formation mechanism of chiral pinwheel structures from achiral units. CW, clockwise; CCW, counterclockwise. Adapted with permission from Reference 59. (h) SEM images of pinwheel SLs, overlaid with a 3D model demonstrating NC size, displacement, and tilt angle. Adapted with permission from Reference 59. (i) SEM image of Au tetrahedral NCs within pinwheel SL. Adapted with permission from Reference 60. © 2022 Springer Nature. (j) Three-dimensional model displaying interparticle forces for bilayer assemblies of tetrahedral NCs. Adapted with permission from Reference 60. (k) SEM images of large-scale (left, top) and small-scale (left, bottom) pinwheel assemblies with identical chiral twist angles, with corresponding photon-induced near-field electron microscopy data (center) and finite-difference time-domain simulations (right). LD, large domain; SD, small domain. Adapted with permission from Reference 60. (l) Computer model of liquid cell TEM setup for in situ measurements. Adapted with permission from Reference 60. (m) Time-resolved snapshots of pinwheel self-assembly process, taken in situ using liquid cell TEM. Adapted with permission from Reference 60.

Similar content being viewed by others

Data availability

Not available.

References

  1. H. Coxeter, Regular Polytopes (Dover Publications, Mineola, 1973)

    Google Scholar 

  2. Y. Kallus, V. Elser, Phys. Rev. E 83, 036703 (2011)

    Article  Google Scholar 

  3. S. Torquato, Y. Jiao, Nature 460, 876 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. J.H. Conway, S. Torquato, Proc. Natl. Acad. Sci. U.S.A. 103, 10612 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. E.R. Chen, M. Engel, S.C. Glotzer, Discrete Comput. Geom. 44, 253 (2010)

    Article  Google Scholar 

  6. A. Haji-Akbari, M. Engel, A.S. Keys, X. Zheng, R.G. Petschek, P. Palffy-Muhoray, S.C. Glotzer, Nature 462, 773 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. H. Tsuiki, Projected images of the Sierpinski tetrahedron and other fractal imaginary cubes (2023), Preprint, arXiv:2205.13065

  8. J.C. Wallach, L.J. Gibson, Int. J. Solids Struct. 38, 7181 (2001)

    Article  Google Scholar 

  9. M.A. Boles, M. Engel, D.V. Talapin, Chem. Rev. 116, 11220 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. B.A. Grzybowski, W.T.S. Huck, Nat. Nanotechnol. 11, 585 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. M. Yang, H. Chan, G. Zhao, J.H. Bahng, P. Zhang, P. Král, N.A. Kotov, Nat. Chem. 9, 287 (2017)

    Article  PubMed  Google Scholar 

  12. Y. Nagaoka, H. Zhu, D. Eggert, O. Chen, Science 362, 1396 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Nagaoka, R. Tan, R. Li, H. Zhu, D. Eggert, Y.A. Wu, Y. Liu, Z. Wang, O. Chen, Nature 561, 378 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. G.M. Whitesides, B. Grzybowski, Science 295, 2418 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. G. Makey, S. Galioglu, R. Ghaffari, E.D. Engin, G. Yıldırım, Ö. Yavuz, O. Bektaş, Ü.S. Nizam, Ö. Akbulut, Ö. Şahin, K. Güngör, D. Dede, H.V. Demir, F.Ö. Ilday, S. Ilday, Nat. Phys. 16, 795 (2020)

    Article  CAS  Google Scholar 

  16. W.C. Schieve, P.M. Allen (eds.), Self-Organization and Dissipative Structures: Applications in the Physical and Social Sciences (University of Texas Press, Austin, 1982)

    Google Scholar 

  17. Y. Wang, J. Chen, R. Li, A. Götz, D. Drobek, T. Przybilla, S. Hübner, P. Pelz, L. Yang, B. Apeleo Zubiri, E. Spiecker, M. Engel, X. Ye, J. Am. Chem. Soc. 145(32), 17902 (2023)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Nagaoka, J. Schneider, H. Zhu, O. Chen, Matter 6, 30 (2023)

    Article  CAS  Google Scholar 

  19. F. Serafin, J. Lu, N. Kotov, K. Sun, X. Mao, Nat. Commun. 12, 4925 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. C.B. Murray, C.R. Kagan, M.G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000)

    Article  CAS  Google Scholar 

  21. Y. Wang, J. Chen, Y. Zhong, S. Jeong, R. Li, X. Ye, J. Am. Chem. Soc. 144, 13538 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. H. Zhang, M. Jin, Y. Xia, Angew. Chem. Int. Ed. 51, 7656 (2012)

    Article  CAS  Google Scholar 

  23. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. P. Zhao, N. Li, D. Astruc, Coord. Chem. Rev. 257, 638 (2013)

    Article  CAS  Google Scholar 

  25. A.N. Beecher, X. Yang, J.H. Palmer, A.L. LaGrassa, P. Juhas, S.J.L. Billinge, J.S. Owen, J. Am. Chem. Soc. 136, 10645 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. A.R. Tao, S. Habas, P. Yang, Small 4, 310 (2008)

    Article  CAS  Google Scholar 

  27. Z. Zhuang, Q. Peng, X. Wang, Y. Li, Angew. Chem. Int. Ed. 46, 8174 (2007)

    Article  CAS  Google Scholar 

  28. Y. Kim, H. Choi, Y. Lee, W. Koh, E. Cho, T. Kim, H. Kim, Y.-H. Kim, H.Y. Jeong, S. Jeong, Nat. Commun. 12, 4454 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Angew. Chem. Int. Ed. 43, 3673 (2004)

    Article  CAS  Google Scholar 

  30. N. Mishra, V.G. Vasavi Dutt, M.P. Arciniegas, Chem. Mater. 31, 9216 (2019)

    Article  CAS  Google Scholar 

  31. L. Manna, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000)

    Article  CAS  Google Scholar 

  32. M. Haddadnezhad, W. Park, I. Jung, H. Hilal, J. Kim, S. Yoo, Q. Zhao, S. Lee, J. Lee, S. Lee, S. Park, ACS Nano 16, 21283 (2022)

    Article  CAS  PubMed  Google Scholar 

  33. J. Park, A. Oh, H. Baik, Y.S. Choi, S.J. Kwon, K. Lee, Nanoscale 6, 10551 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. D. Li, X. He, M. Su, Y. Zhao, J. Li, T. Huang, H. Liu, RSC Adv. 7, 37938 (2017)

    Article  CAS  Google Scholar 

  35. X. Huang, S. Tang, H. Zhang, Z. Zhou, N. Zheng, J. Am. Chem. Soc. 131, 13916 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. J. Harris, J. Hirst, M. Mossinghoff, Combinatorics and Graph Theory, 2nd edn. (Springer, New York, 2008)

    Book  Google Scholar 

  37. J. Conway, H. Burgiel, C. Goodman-Strauss, The Symmetries of Things, 1st edn. (CRC Press, Boca Raton, 2008)

    Google Scholar 

  38. M. Sun, Z. Cheng, W. Chen, M. Jones, ACS Nano 15(10), 15953 (2021)

    Article  CAS  PubMed  Google Scholar 

  39. Z. Zhao, Z. Sun, H. Zhao, M. Zheng, P. Du, J. Zhao, H. Fan, J. Mater. Chem. 22, 21965 (2012)

    Article  CAS  Google Scholar 

  40. R. Tan, Y. Yuan, Y. Nagaoka, D. Eggert, X. Wang, S. Thota, P. Guo, H. Yang, J. Zhao, O. Chen, Chem. Mater. 29, 4097 (2017)

    Article  CAS  Google Scholar 

  41. X.-M. Luo, C.-H. Gong, F. Pan, Y. Si, J.-W. Yuan, M. Asad, X.-Y. Dong, S.-Q. Zang, T.C.W. Mak, Nat. Commun. 13, 1177 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M.D. Bentzon, J. van Wonterghem, S. Mørup, A. Thölén, C.J.W. Koch, Philos. Mag. B 60, 169 (1989)

    Article  CAS  Google Scholar 

  43. C.J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv. Mater. 11, 579 (1999)

    Article  CAS  Google Scholar 

  44. C.B. Murray, C.R. Kagan, M.G. Bawendi, Science 270, 1335 (1995)

    Article  CAS  Google Scholar 

  45. G. Bailey, R. Dimlich, K. Alexander, J. McCarthy, T. Pretlow, S.A. Harfenist, Z.L. Wang, R.L. Whetten, I. Vezmar, M.M. Alvarez, B.E. Salisbury, Microsc. Microanal. 3, 431 (1997)

    Article  Google Scholar 

  46. J.S. Yin, Z.L. Wang, Phys. Rev. Lett. 79, 2570 (1997)

    Article  CAS  Google Scholar 

  47. Z.L. Wang, S.A. Harfenist, I. Vezmar, R.L. Whetten, J. Bentley, N.D. Evans, K.B. Alexander, Adv. Mater. 10(10), 808 (1998)

    Article  CAS  Google Scholar 

  48. Z. Niu, Q. Peng, M. Gong, H. Rong, Y. Li, Angew. Chem. Int. Ed. 50, 6315 (2011)

    Article  CAS  Google Scholar 

  49. S. Ghosh, R. Gaspari, G. Bertoni, M.C. Spadaro, M. Prato, S. Turner, A. Cavalli, L. Manna, R. Brescia, ACS Nano 9, 8537 (2015)

    Article  CAS  PubMed  Google Scholar 

  50. F. Ji, Q. Zhong, J. Chen, L. Chen, H. Hu, Q. Liu, P. Yang, J. Yu, L. Jiang, Y. Xu, E. Gross, Q. Zhang, Part. Part. Syst. Charact. 35, 1700114 (2018)

    Article  Google Scholar 

  51. M.A. Boles, D.V. Talapin, J. Am. Chem. Soc. 136, 5868 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. J. Zhang, Z. Luo, Z. Quan, Y. Wang, A. Kumbhar, D.-M. Smilgies, J. Fang, Nano Lett. 11(7), 2912 (2011)

    Article  PubMed  Google Scholar 

  53. J. Henzie, M. Grünwald, A. Widmer-Cooper, P.L. Geissler, P. Yang, Nat. Mater. 11, 131 (2012)

    Article  CAS  Google Scholar 

  54. Z. Tang, N.A. Kotov, M. Giersig, Science 297, 237 (2002)

    Article  CAS  PubMed  Google Scholar 

  55. Z. Tang, Z. Zhang, Y. Wang, S.C. Glotzer, N.A. Kotov, Science 314, 274 (2006)

    Article  CAS  PubMed  Google Scholar 

  56. J. Yan, W. Feng, J.-Y. Kim, J. Lu, P. Kumar, Z. Mu, X. Wu, X. Mao, N.A. Kotov, Chem. Mater. 32, 476 (2020)

    Article  CAS  Google Scholar 

  57. S. Srivastava, A. Santos, K. Critchley, K.-S. Kim, P. Podsiadlo, K. Sun, J. Lee, C. Xu, G.D. Lilly, S.C. Glotzer, N.A. Kotov, Science 327, 1355 (2010)

    Article  CAS  PubMed  Google Scholar 

  58. J. Yeom, B. Yeom, H. Chan, K.W. Smith, S. Dominguez-Medina, J.H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A.L. Rogach, P. Zhang, S. Link, P. Král, N.A. Kotov, Nat. Mater. 14, 66 (2015)

    Article  CAS  PubMed  Google Scholar 

  59. Z. Cheng, M.R. Jones, Nat. Commun. 13, 4207 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. S. Zhou, J. Li, J. Lu, H. Liu, J.-Y. Kim, A. Kim, L. Yao, C. Liu, C. Qian, Z.D. Hood, X. Lin, W. Chen, T.E. Gage, I. Arslan, A. Travesset, K. Sun, N.A. Kotov, Q. Chen, Nature 612(7939), 259 (2022)

    Article  CAS  PubMed  Google Scholar 

  61. K. Bian, H. Schunk, D. Ye, A. Hwang, T.S. Luk, R. Li, Z. Wang, H. Fan, Nat. Commun. 9, 2365 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  62. Y. Zhong, Z. Wang, R. Zhang, F. Bai, H. Wu, R. Haddad, H. Fan, ACS Nano 8, 827 (2014)

    Article  CAS  PubMed  Google Scholar 

  63. Y. Tian, J.R. Lhermitte, L. Bai, T. Vo, H.L. Xin, H. Li, R. Li, M. Fukuto, K.G. Yager, J.S. Kahn, Y. Xiong, B. Minevich, S.K. Kumar, O. Gang, Nat. Mater. 19, 789 (2020)

    Article  CAS  PubMed  Google Scholar 

  64. Y. Zhong, J. Wang, R. Zhang, W. Wei, H. Wang, X. Lü, F. Bai, H. Wu, R. Haddad, H. Fan, Nano Lett. 14, 7175 (2014)

    Article  CAS  PubMed  Google Scholar 

  65. L. Fang, J.Y. Park, Y. Cui, P. Alivisatos, J. Shcrier, B. Lee, L.-W. Wang, M. Salmeron, J. Chem. Phys. 127, 184704 (2007)

    Article  PubMed  Google Scholar 

  66. M. De Giorgi, D. Tarì, L. Manna, R. Krahne, R. Cingolani, Microelectronics J. 36, 552 (2005)

    Article  Google Scholar 

  67. R. Narayanan, M.A. El-Sayed, J. Phys. Chem. B 108, 5726 (2004)

    Article  CAS  Google Scholar 

  68. G. Barbillon, A. Ivanov, A.K. Sarychev, Symmetry 12, 896 (2020)

    Article  CAS  Google Scholar 

  69. Y. Zhou, M. Califano, J. Phys. Chem. Lett. 12, 9155 (2021)

    Article  CAS  PubMed  Google Scholar 

  70. R. Narayanan, M.A. El-Sayed, J. Am. Chem. Soc. 126, 7194 (2004)

    Article  CAS  PubMed  Google Scholar 

  71. Q. Zhou, G. Jiang, Chem 4, 2022 (2018)

    Article  CAS  Google Scholar 

  72. H. Kim, N.T. Khi, J. Yoon, H. Yang, Y. Chae, H. Baik, H. Lee, J.-H. Sohn, K. Lee, Chem. Commun. 49, 2225 (2013)

    Article  CAS  Google Scholar 

  73. P.F. Damasceno, M. Engel, S.C. Glotzer, Science 337, 453 (2012)

    Article  CAS  PubMed  Google Scholar 

  74. P.F. Damasceno, M. Engel, S.C. Glotzer, ACS Nano 6, 609 (2012)

    Article  CAS  PubMed  Google Scholar 

  75. R. van Damme, G.M. Coli, R. van Roij, M. Dijkstra, ACS Nano 14, 15144 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  76. W. Jin, P. Lu, S. Li, Sci. Rep. 5, 15640 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

O.C. acknowledges the support from the National Science Foundation through Award No. DMR-1943930. O.C. also acknowledges supports from the Camille & Henry Dreyfus Foundation through the Camille Dreyfus Teacher-Scholar Award program and the Alfred P. Sloan Foundation through the Sloan Research Fellowship Award program. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US DOE’s National Nuclear Security Administration (Contract No. DE-NA-0003525). The views expressed in the article do not necessarily represent the views of the US DOE or the US government.

Author information

Authors and Affiliations

Authors

Contributions

J.S., Y.N., and O.C. wrote the manuscript. All authors commented on and edited the manuscript.

Corresponding authors

Correspondence to Hongyou Fan or Ou Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, J., Nagaoka, Y., Fan, H. et al. Chemical and architectural intricacy from nanoscale tetrahedra and their analogues. MRS Bulletin 49, 319–329 (2024). https://doi.org/10.1557/s43577-024-00688-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-024-00688-8

Keywords

Navigation