Skip to main content
Log in

Small-scale robots inspired by aquatic interfacial biolocomotion

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Bioinspired semiaquatic robots have a remarkable ability to effectively navigate on the water surface. In this article, we explore the design of these biomimetic robotic systems and their body scale-dependent governing forces behind the motion. First, the role of surface tension in enabling hydrophobic objects to remain afloat despite having greater density than water and the effect of morphology, especially the presence of hair-like structures, on the flotation stability are discussed. Then the forces that drive the diverse motions of natural organisms and robots on the air/water interface are investigated. We highlight that while small organisms and robots generate motion utilizing surface tension-based force, large ones primarily exploit inertial drag for propulsion. We show the correlation between the performance and body size in both small and large natural organisms, and how they adjust the shape and speed of legs to optimize the propulsion. To optimize these distinct propulsion forces, the shape and speed of the driving legs are adjusted, thereby maximizing momentum while maintaining high efficiency. This article aims to provide insights on the design and operating mechanism of semiaquatic robots and to bridge the gap between the study of biological locomotion and its mechanical analogs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. A.R. Parker, C.R. Lawrence, Nature 414, 33 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. A. Lee, M.-W. Moon, H. Lim, W.-D. Kim, H.-Y. Kim, Langmuir 28, 10183 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. D.L. Hu, B. Chan, J.W.M. Bush, Nature 424, 663 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. D.L. Hu, M. Prakash, B. Chan, J.W.M. Bush, Exp. Fluids 43, 769 (2007)

    Article  Google Scholar 

  5. J.-S. Koh, E. Yang, G.-P. Jung, S.-P. Jung, J.H. Son, S.-I. Lee, P.G. Jablonski, R.J. Wood, H.-Y. Kim, K.-J. Cho, Science 349, 517 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. O. Ozcan, H. Wang, J.D. Taylor, M. Sitti, Int. J. Adv. Robot. Syst. 11, 85 (2014)

    Article  Google Scholar 

  7. K. Yang, G. Liu, J. Yan, T. Wang, X. Zhang, J. Zhao, Bioinspir. Biomim. 11, 066002 (2016)

    Article  ADS  PubMed  Google Scholar 

  8. J.W.M. Bush, D.L. Hu, M. Prakash, “The Integument of Water-walking Arthropods: Form and Function,” in Advances in Insect Physiology: Insect Mechanics and Control, 1st ed., ed. by J. Casas, S.J. Simpson, Advances in Insect Physiology Series, vol. 34, ed. by S.J. Simpson (Academic Press, 2007), pp. 117–192

  9. J.W.M. Bush, D.L. Hu, Annu. Rev. Fluid Mech. 38, 339 (2005)

    Article  ADS  Google Scholar 

  10. D. Vella, Annu. Rev. Fluid Mech. 47, 115 (2015)

    Article  ADS  Google Scholar 

  11. D. Vella, D.-G. Lee, H.-Y. Kim, Langmuir 22, 5979 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. D. Vella, P.D. Metcalfe, R.J. Whittaker, J. Fluid Mech. 549, 215 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. X. Gao, L. Jiang, Nature 432, 36 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. H.-M.S. Hu, G.S. Watson, B.W. Cribb, J.A. Watson, J. Exp. Biol. 214, 915 (2011)

    Article  PubMed  Google Scholar 

  15. H.Y. Erbil, C.E. Cansoy, Langmuir 25, 14135 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. T.-G. Cha, J.W. Yi, M.-W. Moon, K.-R. Lee, H.-Y. Kim, Langmuir 26, 8319 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. L.J. Burton, N. Cheng, J.W. Bush, Integr. Comp. Biol. 54, 969 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. C. Lang, K. Seifert, K. Dettner, Naturwissenschaften 99, 937 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. D.L. Hu, J.W.M. Bush, J. Fluid Mech. 644, 5 (2010)

    Article  ADS  Google Scholar 

  20. R.B. Suter, J. Arachnol. 27, 489 (1999)

    Google Scholar 

  21. Z. Hu, W. Fang, Q. Li, X.-Q. Feng, J.-A. Lv, Nat. Commun. 11, 5780 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. E. Yang, J.H. Son, S.-I. Lee, P.G. Jablonski, H.-Y. Kim, Nat. Commun. 7, 13698 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. H.-Y. Kim, J. Amauger, H.-B. Jeong, D.-G. Lee, E. Yang, P.G. Jablonski, Phys. Rev. Fluids 2, 100505 (2017)

    Article  ADS  Google Scholar 

  24. R.B. Suter, J. Arachnol. 41, 93 (2013)

    Article  Google Scholar 

  25. J.W. Glasheen, T.A. McMahon, Nature 380, 340 (1996)

    Article  ADS  CAS  Google Scholar 

  26. J.W. Glasheen, T.A. McMahon, J. Exp. Biol. 199, 2611 (1996)

    Article  CAS  PubMed  Google Scholar 

  27. S.T. Hsieh, G.V. Lauder, J. Exp. Biol. 101, 16784 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. T. Aigeldinger, F. Fish, J. Exp. Biol. 198, 1567 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. W.T. Gough, S.C. Farina, F.E. Fish, J. Exp. Biol. 218, 1632 (2015)

    PubMed  Google Scholar 

  30. V.M. Ortega-Jimenez, E.J. Challita, B. Kim, H. Ko, M. Gwon, J.-S. Koh, M.S. Bhamla, Proc. Natl. Acad. Sci. U.S.A. 119, e2211283119 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. W. Kim, J. Amauger, J. Ha, T.H. Pham, A.D. Tran, J.H. Lee, J. Park, P.G. Jablonski, H.-Y. Kim, S.-I. Lee, Proc. Natl. Acad. Sci. U.S.A. 120, e2219972120 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D. Kim, M. Gwon, B. Kim, V.M. Ortega-Jimenez, S. Han, D. Kang, M.S. Bhamla, J.-S. Koh, Micromachines (Basel) 13(4), 627 (2022)

    Article  PubMed  Google Scholar 

  33. D. Kim, B. Kim, B. Shin, D. Shin, C.-K. Lee, J.-S. Chung, J. Seo, Y.-T. Kim, G. Sung, W. Seo, S. Kim, S. Hong, S. Hwang, S. Han, D. Kang, H.-S. Lee, J.-S. Koh, Nat. Commun. 13, 4155 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. K.Y. Lee, L. Wang, J. Qu, K.R. Oldham, “Milli-scale Biped Vibratory Water Strider,” 2019 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) (IEEE, Helsinki, July 1–5, 2019), pp. 1–6

  35. Y.S. Song, M. Sitti, IEEE Trans. Robot. 23, 578 (2007)

    Article  Google Scholar 

  36. X. Zhang, J. Zhao, Q. Zhu, N. Chen, M. Zhang, Q. Pan, ACS Appl. Mater. Interfaces 3, 2630 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. J.H. Yan, X.B. Zhang, J. Zhao, G.F. Liu, H.G. Cai, Q.M. Pan, Bioinspir. Biomim. 10, 046016 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. J. Yan, K. Yang, G. Liu, J. Zhao, IEEE Access 8, 89643 (2020)

    Article  Google Scholar 

  39. K. Suzuki, H. Takanobu, K. Noya, H. Koike, H. Miura, “Water Strider Robots with Microfabricated Hydrophobic Legs,” 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (San Diego, October 29–November 2, 2007), pp. 590–595

  40. Y.S. Song, M. Sitti, “STRIDE; A Highly Maneuverable and Non-tethered Water Strider Robot,” in Proceedings of the 2007 IEEE International Conference on Robotics and Automation (Rome, 2007), pp. 980–984

  41. J. Zhao, X. Zhang, Q. Pan, “A Water Walking Robot Inspired by Water Strider,” 2012 IEEE International Conference on Mechatronics and Automation (Chengdu, August 5–8, 2012), pp. 962–967

  42. J. Yan, X. Zhang, K. Yang, J. Zhao, “A Single Driven Bionic Water Strider Sliding Robot Mimicking the Spatial Elliptical Trajectory,” 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO) (Dali, Yunnan, December 6–8, 2019), pp. 142–147

  43. X. Zhang, J. Yan, K. Yang, J. Zhao, S. Tang, IEEE Robot. Autom. Lett. 7, 2463 (2022)

    Article  Google Scholar 

  44. Z. Shihao, J. Chen, D. Li, W. Ge, J. Leng, H. Huang, “Mechanical Design and Experimental Research on Locomotion Characters of Robot Inspired by Water Strider,” 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) (Singapore, June 26–29, 2016), pp. 145–150

  45. J. Zhao, X. Zhang, N. Chen, Q. Pan, ACS Appl. Mater. Interfaces 4, 3706 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. B. Shin, H-Y. Kim, K.-J. Cho, “Towards a Biologically Inspired Small-Scale Water Jumping Robot,” 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (Scottsdale, October 19–22, 2008), pp. 127–131

  47. M. Gwon, D. Kim, B. Kim, S. Han, D. Kang, J.-S. Koh, Nat. Commun. 14, 1473 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. A.J.J. Crumière, M.E. Santos, M. Sémon, D. Armisén, F.F.F. Moreira, A. Khila, Curr. Biol. 26, 3336 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  49. M. Burrows, G.P. Sutton, Curr. Biol. 22, R990 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. B.S. Robert, G. Jessica, J. Arachnol. 28, 201 (2000)

    Article  Google Scholar 

  51. M. Burrows, J. Exp. Biol. 216, 1973 (2013)

    PubMed  Google Scholar 

  52. Y. Chen, N. Doshi, B. Goldberg, H. Wang, R.J. Wood, Nat. Commun. 9, 2495 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. H. Huang, C. Sheng, G. Wu, Y. Shen, H. Wang, Appl. Sci. (Basel) 10(18), 6300 (2020)

    Article  CAS  Google Scholar 

  54. H. Kim, D. Lee, K. Jeong, T. Seo, IEEE/ASME Trans. Mechatron. 21, 175 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (Nos. RS-2023-00248326 and NRF-2021R1C1C1011872).

Funding

National Research Foundation of Korea (NRF), RS-2023-00248326, J.H., 2021R1C1C1011872, J.-S.K.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Je-Sung Koh or Jonghyun Ha.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Park, C.J., Koh, JS. et al. Small-scale robots inspired by aquatic interfacial biolocomotion. MRS Bulletin 49, 148–158 (2024). https://doi.org/10.1557/s43577-023-00646-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00646-w

Keywords

Navigation