Skip to main content
Log in

High-efficiency piezo-phototronic solar cells by strain-induced polarization

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Toward high power-conversion efficiency (PCE) of a two-dimensional (2D) material solar cell requires carrier and light-management technologies. By strain-induced polarization of piezotronic and piezo-phototronic effect, under the standard AM1.5G solar spectrum, the maximum theoretical PCE is 54.4% of SnS among the 2D piezoelectric semiconductors, such as SnS, MoS2, GeS, WS2, WSe2, and MoSe2. PCEs of solar cells with 2D WS2 and MoS2 are boosted to 48.1% and 42.8%, respectively. Strain-induced polarization will not only increase the built-in field, but also simplify bandgap gradients by inexpensive strain regulation. In this article, we propose the tandem and parallel piezo-phototronic solar cell (PSC) with single-type 2D piezoelectric semiconductor materials. This work provides a novel way to develop an ultrahigh efficiency 2D material solar cell.

Impact statement

High-performance piezotronic and piezo-phototronic solar cells have been developed by strain-induced polarization. Nonuniform strain can effectively enhance piezoelectric polarization to improve power-conversion efficiency (PCE) of piezotronic solar cells. Toward high PCE of a two-dimensional (2D) material solar cell requires carrier and light-management technologies. By the strain-induced polarization of piezotronic and piezo-phototronic effect, cell PCEs based on 2D WS2 and MoS2 are boosted to 48.1% and 42.8%, respectively. Strain-induced polarization will not only increase the built-in field, but also simplify bandgap gradients by inexpensive strain regulation. In this article, we propose the tandem and parallel piezo-phototronic solar cell with single-type 2D piezoelectric semiconductor materials. This work not only provides a novel way to develop an ultrahigh efficiency 2D material solar cell, but also overcome the limitation of Shockley–Queisser for single material solar cells.

Graphical abstract

By strain-induced polarization of piezotronic and piezo-phototronic effect, the maximum theoretical PCE is 54.4% of SnS among the 2D piezoelectric semiconductors, such as SnS, MoS2, GeS, WS2, WSe2, and MoSe2. PCE of a solar cell with 2D WS2 and MoS2 are boosted to 48.1% and 42.8%, respectively. Strain-induced polarization will not only increase built-in field, but also simplify bandgap gradients by inexpensive strain regulation. In this article, we propose the tandem and parallel piezo-phototronic solar cell with single-type 2D piezoelectric semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. W. Wu, Z.L. Wang, Nat. Rev. Mater. 1, 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31

    Article  Google Scholar 

  2. Z.L. Wang, W. Wu, C. Falconi, MRS Bull. 43(12), 922 (2018). https://doi.org/10.1557/mrs.2018.263

    Article  ADS  Google Scholar 

  3. C. Pan, J. Zhai, Z.L. Wang, Chem. Rev. 119, 9303 (2019). https://doi.org/10.1021/acs.chemrev.8b00599

    Article  CAS  PubMed  Google Scholar 

  4. Z.L. Wang, J. Song, Science 312, 242 (2006). https://doi.org/10.1126/science.1124005

    Article  ADS  CAS  PubMed  Google Scholar 

  5. X. Wang, J. Song, J. Liu, Z.L. Wang, Science 316, 102 (2007). https://doi.org/10.1126/science.1139366

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Y. Qin, X. Wang, Z.L. Wang, Nature 451, 809 (2008). https://doi.org/10.1038/nature06601

    Article  ADS  CAS  PubMed  Google Scholar 

  7. J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, Z.L. Wang, Nano Lett. 8, 3035 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. W. Wu, Y. Wei, Z.L. Wang, Adv. Mater. 22, 4711 (2010). https://doi.org/10.1002/adma.201001925

    Article  CAS  PubMed  Google Scholar 

  9. Q. Yang, X. Guo, W. Wang, Z. Yan, X. Sheng, L. Der Hsien, W. Zhong Lin, ACS Nano 4, 6285 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Y. Hu, Y. Zhang, Y. Chang, R.L. Snyder, W. Zhong Lin, ACS Nano 4, 4220 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. Q. Yang, W. Wang, S. Xu, Z.L. Wang, Nano Lett. 11, 4012 (2011). https://doi.org/10.1021/nl202619d

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Y. Zhang, Y. Leng, M. Willatzen, B. Huang, MRS Bull. 43(12), 928 (2018). https://doi.org/10.1557/mrs.2018.297

    Article  ADS  CAS  Google Scholar 

  13. Y. Zhang, L. Li, Nano Energy 22, 533 (2016). https://doi.org/10.1016/j.nanoen.2016.02.039

    Article  CAS  Google Scholar 

  14. L. Li, Y. Zhang, Nano Res. 10, 2527 (2017). https://doi.org/10.1007/s12274-017-1457-y

    Article  CAS  Google Scholar 

  15. Y. Zhang, J. Nie, L. Li, Nano Res. 11, 1977 (2018). https://doi.org/10.1007/s12274-017-1814-x

    Article  ADS  CAS  Google Scholar 

  16. Y. Zhang, G. Hu, Y. Zhang, L. Li, M. Willatzen, Z.L. Wang, Nano Energy 60, 649 (2019). https://doi.org/10.1016/j.nanoen.2019.04.011

    Article  CAS  Google Scholar 

  17. G. Michael, Y. Zhang, J. Nie, D. Zheng, G. Hu, R. Liu, M. Dan, L. Li, Y. Zhang, Nano Energy 76, 105091 (2020). https://doi.org/10.1016/j.nanoen.2020.105091

    Article  Google Scholar 

  18. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034

    Article  ADS  CAS  Google Scholar 

  19. D. König, K. Casalenuovo, Y. Takeda, G. Conibeer, J.F. Guillemoles, R. Patterson, L.M. Huang, M.A. Green, Physica E 42, 2862 (2010). https://doi.org/10.1016/j.physe.2009.12.032

    Article  ADS  CAS  Google Scholar 

  20. M.C. Beard, J. Phys. Chem. Lett. 2, 1282 (2011). https://doi.org/10.1021/jz200166y

    Article  CAS  PubMed  Google Scholar 

  21. A.D. Vos, J. Phys. D Appl. Phys. 13, 83946 (1980)

    Article  Google Scholar 

  22. C.H. Henry, J. Appl. Phys. 51, 4494 (1980)

    Article  ADS  CAS  Google Scholar 

  23. A.S. Brown, M.A. Green, Physica E Low Dimens. Syst. Nanostruct. 14, 96 (2002)

    Article  ADS  Google Scholar 

  24. J.P. Connolly, D. Mencaraglia, C. Renard, D. Bouchier, Prog. Photovolt. Res. Appl. 22, 810 (2014)

    Article  CAS  Google Scholar 

  25. S. Abdul Hadi, E.A. Fitzgerald, A. Nayfeh, J. Appl. Phys. 119, 073104 (2016)

    Article  ADS  Google Scholar 

  26. J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman, H.L. Guthrey, M.R. Young, T. Song, T. Moriarty, Nat. Energy 5, 326 (2020). https://doi.org/10.1038/s41560-020-0598-5

    Article  ADS  CAS  Google Scholar 

  27. J. Feng, X. Qian, C.-W. Huang, J. Li, Nat. Photonics 6, 866 (2012)

    Article  ADS  CAS  Google Scholar 

  28. S. Bertolazzi, J. Brivio, A. Kis, ACS Nano 5, 9703 (2011). https://doi.org/10.1021/nn203879f

    Article  CAS  PubMed  Google Scholar 

  29. Y. Zhang, Y. Yang, Z.L. Wang, Energy Environ. Sci. 5, 6850 (2012). https://doi.org/10.1039/c2ee00057a

    Article  CAS  Google Scholar 

  30. L. Rogée, L. Wang, Y. Zhang, S. Cai, P. Wang, M. Chhowalla, W. Ji, S.P. Lau, Science 376, 973 (2022)

    Article  ADS  PubMed  Google Scholar 

  31. R. Wang, T. Huang, J. Xue, J. Tong, K. Zhu, Y. Yang, Nat. Photonics 15, 411 (2021). https://doi.org/10.1038/s41566-021-00809-8

    Article  ADS  CAS  Google Scholar 

  32. S.M. Sze, Y. Li, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2021)

    Google Scholar 

  33. J.A. Nelson, The Physics of Solar Cells (World Scientific, Singapore, 2003)

    Book  Google Scholar 

  34. X. Zhang, Q. Liao, S. Liu, Z. Kang, Z. Zhang, J. Du, F. Li, S. Zhang, J. Xiao, B. Liu, Y. Ou, X. Liu, L. Gu, Y. Zhang, Nat. Commun. 8, 15881 (2017). https://doi.org/10.1038/ncomms15881

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. P. Lin, L. Zhu, D. Li, L. Xu, C. Pan, Z. Wang, Adv. Funct. Mater. 28(35), 1802849 (2018). https://doi.org/10.1002/adfm.201802849

    Article  PubMed  PubMed Central  Google Scholar 

  36. P. Chaudhary, H. Lu, M. Loes, A. Lipatov, A. Sinitskii, A. Gruverman, Nano Lett. 22, 1047 (2022). https://doi.org/10.1021/acs.nanolett.1c04019

    Article  ADS  CAS  PubMed  Google Scholar 

  37. M. Bernardi, M. Palummo, J.C. Grossman, Nano Lett. 13, 3664 (2013). https://doi.org/10.1021/nl401544y

    Article  ADS  CAS  PubMed  Google Scholar 

  38. D.Y. Qiu, F.H. da Jornada, S.G. Louie, Phys. Rev. Lett. 111, 216805 (2013). https://doi.org/10.1103/PhysRevLett.111.216805

    Article  ADS  CAS  PubMed  Google Scholar 

  39. A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012)

    Article  ADS  Google Scholar 

  40. Y. Wang, J.C. Kim, Y. Li, K.Y. Ma, S. Hong, M. Kim, H.S. Shin, H.Y. Jeong, M. Chhowalla, Nature 610, 61 (2022). https://doi.org/10.1038/s41586-022-05134-w

    Article  ADS  CAS  PubMed  Google Scholar 

  41. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone, Z.L. Wang, Nature 514, 470 (2014). https://doi.org/10.1038/nature13792

    Article  ADS  CAS  PubMed  Google Scholar 

  42. H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z.J. Wong, Z. Ye, Y. Ye, X. Yin, X. Zhang, Nat. Nanotechnol. 10, 151 (2015). https://doi.org/10.1038/nnano.2014.309

    Article  ADS  CAS  PubMed  Google Scholar 

  43. T. Dan, M. Willatzen, Z.L. Wang, Nano Energy 56, 512 (2019). https://doi.org/10.1016/j.nanoen.2018.11.073

    Article  CAS  Google Scholar 

  44. H. Hallil, W. Cai, K. Zhang, P. Yu, S. Liu, R. Xu, C. Zhu, Q. Xiong, Z. Liu, Q. Zhang, Adv. Electron. Mater. 8, 2101131 (2022)

    Article  CAS  Google Scholar 

  45. W. Cai, J. Wang, Y. He, S. Liu, Q. Xiong, Z. Liu, Q. Zhang, Nanomicro Lett. 13, 74 (2021). https://doi.org/10.1007/s40820-020-00584-1

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Y.-X. Zhou, Y.-T. Lin, S.-M. Huang, G.-T. Chen, S.-W. Chen, H.-S. Wu, I.C. Ni, W.-P. Pan, M.-L. Tsai, C.-I. Wu, P.-K. Yang, Nano Energy 97, 107172 (2022). https://doi.org/10.1016/j.nanoen.2022.107172

    Article  Google Scholar 

  47. L. Li, P. Wen, Y. Yang, N. Huo, J. Li, J. Mater. Chem. C 9, 1396 (2021). https://doi.org/10.1039/d0tc05001f

    Article  CAS  Google Scholar 

  48. C.J. Brennan, R. Ghosh, K. Koul, S.K. Banerjee, N. Lu, E.T. Yu, Nano Lett. 17, 5464 (2017). https://doi.org/10.1021/acs.nanolett.7b02123

    Article  ADS  CAS  PubMed  Google Scholar 

  49. R. Cao, R. Wu, D. Zhang, S. Xu, Appl. Surf. Sci. 553, 149557 (2021). https://doi.org/10.1016/j.apsusc.2021.149557

    Article  Google Scholar 

  50. Q. Truong Hoang, K.A. Huynh, T.G. Nguyen Cao, J.H. Kang, X.N. Dang, V. Ravichandran, H.C. Kang, M. Lee, J.-E. Kim, Y.T. Ko, T.I. Lee, M.S. Shim, Adv. Mater. 35(18), 2300437 (2023). https://doi.org/10.1002/adma.202300437

    Article  PubMed  Google Scholar 

  51. W. Wu, X. Wen, Z.L. Wang, Science 340, 952 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  52. C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, Nat. Photonics 7, 752 (2013). https://doi.org/10.1038/nphoton.2013.191

    Article  ADS  CAS  Google Scholar 

  53. L. Wang, S. Liu, X. Feng, Q. Xu, S. Bai, L. Zhu, L. Chen, Y. Qin, Z.L. Wang, ACS Nano 11, 4859 (2017). https://doi.org/10.1021/acsnano.7b01374

    Article  CAS  PubMed  Google Scholar 

  54. S.M. Park, B. Wang, T. Paudel, S.Y. Park, S. Das, J.R. Kim, E.K. Ko, H.G. Lee, N. Park, L. Tao, D. Suh, E.Y. Tsymbal, L.Q. Chen, T.W. Noh, D. Lee, Nat. Commun. 11, 2586 (2020). https://doi.org/10.1038/s41467-020-16207-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. L. Wang, S. Liu, X. Feng, C. Zhang, L. Zhu, J. Zhai, Y. Qin, Z.L. Wang, Nat. Nanotechnol. 15, 661 (2020). https://doi.org/10.1038/s41565-020-0700-y

    Article  ADS  CAS  PubMed  Google Scholar 

  56. D. Guo, P. Guo, L. Ren, Y. Yao, W. Wang, M. Jia, Y. Wang, L. Wang, Z.L. Wang, J. Zhai, Sci. Adv. 9(10), eadd3310 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. K.S. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805

    Article  ADS  CAS  PubMed  Google Scholar 

  59. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  ADS  CAS  PubMed  Google Scholar 

  61. E. Blundo, C. Di Giorgio, G. Pettinari, T. Yildirim, M. Felici, Y. Lu, F. Bobba, A. Polimeni, Adv. Mater. Interfaces 7(17), 2000621 (2020). https://doi.org/10.1002/admi.202000621

    Article  Google Scholar 

  62. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 8, 497 (2013). https://doi.org/10.1038/nnano.2013.100

    Article  ADS  CAS  PubMed  Google Scholar 

  63. J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan, D.G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D.H. Cobden, X. Xu, Nat. Nanotechnol. 9, 268 (2014). https://doi.org/10.1038/nnano.2014.26

    Article  ADS  CAS  PubMed  Google Scholar 

  64. A. Pospischil, M.M. Furchi, T. Mueller, Nat. Nanotechnol. 9, 257 (2014). https://doi.org/10.1038/nnano.2014.14

    Article  ADS  CAS  PubMed  Google Scholar 

  65. A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Science 352, aad4424 (2016). https://doi.org/10.1126/science.aad4424

    Article  CAS  PubMed  Google Scholar 

  66. X. Wen, W. Wu, Z.L. Wang, Nano Energy 2, 1093 (2013). https://doi.org/10.1016/j.nanoen.2013.08.008

    Article  CAS  Google Scholar 

  67. L. Zhu, P. Lin, B. Chen, L. Wang, L. Chen, D. Li, Z.L. Wang, Nano Res. 11, 3877 (2018). https://doi.org/10.1007/s12274-017-1962-z

    Article  CAS  Google Scholar 

  68. J. Fujimura, Y. Adachi, T. Takahashi, T. Kobayashi, Nano Energy 99, 107385 (2022). https://doi.org/10.1016/j.nanoen.2022.107385

    Article  Google Scholar 

  69. G. Hu, W. Guo, R. Yu, X. Yang, R. Zhou, C. Pan, Z.L. Wang, Nano Energy 23, 27 (2016). https://doi.org/10.1016/j.nanoen.2016.02.057

    Article  CAS  Google Scholar 

  70. L. Zhu, L. Wang, F. Xue, L. Chen, J. Fu, X. Feng, T. Li, Z.L. Wang, Adv. Sci. 4, 1600185 (2017). https://doi.org/10.1002/advs.201600185

    Article  CAS  Google Scholar 

  71. C. Jiang, L. Jing, X. Huang, M. Liu, C. Du, T. Liu, X. Pu, W. Hu, Z.L. Wang, ACS Nano 11, 9405 (2017). https://doi.org/10.1021/acsnano.7b04935

    Article  CAS  PubMed  Google Scholar 

  72. C. Jiang, Y. Chen, J. Sun, L. Jing, M. Liu, T. Liu, Y. Pan, X. Pu, B. Ma, W. Hu, Z.L. Wang, Nano Energy 57, 300 (2019). https://doi.org/10.1016/j.nanoen.2018.12.036

    Article  CAS  Google Scholar 

  73. H.-S. Yun, B.-W. Park, Y.C. Choi, J. Im, T.J. Shin, S.I. Seok, Adv. Energy Mater. 9(35), 1901343 (2019). https://doi.org/10.1002/aenm.201901343

    Article  Google Scholar 

  74. K.F. Abd El-Rahman, A.A.A. Darwish, E.A.A. El-Shazly, Mater. Sci. Semicond. Process. 25, 123 (2014). https://doi.org/10.1016/j.mssp.2013.10.003

    Article  CAS  Google Scholar 

  75. M. Feng, S.-C. Liu, L. Hu, J. Wu, X. Liu, D.-J. Xue, J.-S. Hu, L.-J. Wan,  J. Am. Chem. Soc. 143(25), 9664 (2021). https://doi.org/10.1021/jacs.1c04734

    Article  PubMed  PubMed Central  Google Scholar 

  76. S.C. Liu, C.M. Dai, Y. Min, Y. Hou, A.H. Proppe, Y. Zhou, C. Chen, S. Chen, J. Tang, D.J. Xue, E.H. Sargent, J.S. Hu, Nat. Commun. 12, 670 (2021). https://doi.org/10.1038/s41467-021-20955-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. M. Shanmugam, R. Jacobs-Gedrim, E.S. Song, B. Yu, Nanoscale 6, 12682 (2014). https://doi.org/10.1039/c4nr03334e

    Article  ADS  CAS  PubMed  Google Scholar 

  78. K. Nassiri Nazif, A. Daus, J. Hong, N. Lee, S. Vaziri, A. Kumar, F. Nitta, M.E. Chen, S. Kananian, R. Islam, K.H. Kim, J.H. Park, A.S.Y. Poon, M.L. Brongersma, E. Pop, K.C. Saraswat, Nat. Commun. 12, 7034 (2021). https://doi.org/10.1038/s41467-021-27195-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. S. Wi, H. Kim, M. Chen, H. Nam, L.J. Guo, E. Meyhofer, X. Liang, ACS Nano 8, 5270 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. J.P.B. Silva, C. Almeida Marques, A.S. Viana, L.F. Santos, K. Gwozdz, E. Popko, J.P. Connolly, K. Veltruska, V. Matolin, O. Conde, Sci. Rep. 10, 1215 (2020). https://doi.org/10.1038/s41598-020-58164-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang, D. Gao, N.J. Long, Z. Zhu, Science 376, 416 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  82. A. De Vos, J. Phys. D Appl. Phys. 13, 839 (1980)

    Article  ADS  Google Scholar 

  83. F. Guo, N. Li, F.W. Fecher, N. Gasparini, C.O. Ramirez Quiroz, C. Bronnbauer, Y. Hou, V.V. Radmilovic, V.R. Radmilovic, E. Spiecker, K. Forberich, C.J. Brabec, Nat. Commun. 6, 7730 (2015). https://doi.org/10.1038/ncomms8730

    Article  ADS  PubMed  Google Scholar 

  84. D.Q. Khoa, C.V. Nguyen, H.V. Phuc, V.V. Ilyasov, T.V. Vu, N.Q. Cuong, B.D. Hoi, D.V. Lu, E. Feddi, M. El-Yadri, Physica B 545, 255 (2018)

    Article  ADS  CAS  Google Scholar 

  85. Z. Nabi, A. Kellou, S. Mecabih, A. Khalfi, N. Benosman, Mater. Sci. Eng. B 98, 104 (2003)

    Article  Google Scholar 

  86. R. Fei, W. Li, J. Li, L. Yang, Appl. Phys. Lett. 107, 173104 (2015)

    Article  ADS  Google Scholar 

  87. L.C. Gomes, A. Carvalho, A.C. Neto, Phys. Rev. B 92, 214103 (2015)

    Article  ADS  Google Scholar 

  88. T.V. Vu, H.D. Tong, T.K. Nguyen, C.V. Nguyen, A. Lavrentyev, O. Khyzhun, B. Gabrelian, H.L. Luong, K.D. Pham, P.T. Dang, Chem. Phys. 521, 5 (2019)

    Article  CAS  Google Scholar 

  89. S. Zhang, N. Wang, S. Liu, S. Huang, W. Zhou, B. Cai, M. Xie, Q. Yang, X. Chen, H. Zeng, Nanotechnology 27, 274001 (2016)

    Article  ADS  PubMed  Google Scholar 

  90. A.Y. Shah, G. Kedarnath, A. Tyagi, C. Betty, V.K. Jain, B. Vishwanadh, ChemistrySelect 2, 4598 (2017)

    Article  CAS  Google Scholar 

  91. Y. Xu, H. Zhang, H. Shao, G. Ni, J. Li, H. Lu, R. Zhang, B. Peng, Y. Zhu, H. Zhu, Phys. Rev. B 96, 245421 (2017)

    Article  ADS  Google Scholar 

  92. R. Chaurasiya, A. Dixit, R. Pandey, Superlattices Microstruct. 122, 268 (2018). https://doi.org/10.1016/j.spmi.2018.07.039

    Article  ADS  CAS  Google Scholar 

  93. A. Hichri, I.B. Amara, S. Ayari, S. Jaziri, J. Phys. Condens. Matter 29, 435305 (2017)

    Article  CAS  PubMed  Google Scholar 

  94. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H.M. Hill, A.M. Van Der Zande, D.A. Chenet, E.-M. Shih, J. Hone, T.F. Heinz, Phys. Rev. B 90, 205422 (2014)

    Article  ADS  Google Scholar 

  95. K.-A.N. Duerloo, M.T. Ong, E.J. Reed, J. Phys. Chem. Lett. 3, 2871 (2012). https://doi.org/10.1021/jz3012436

    Article  CAS  Google Scholar 

  96. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund Jr., S.T. Pantelides, K.I. Bolotin, Nano Lett. 13, 3626 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Y. Zhou, W. Liu, X. Huang, A. Zhang, Y. Zhang, Z.L. Wang, Nano Res. 9, 800 (2016)

    Article  CAS  Google Scholar 

  98. J.O. Island, A. Kuc, E.H. Diependaal, R. Bratschitsch, H.S. Van Der Zant, T. Heine, A. Castellanos-Gomez, Nanoscale 8, 2589 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support from the Major Project of the National Natural Science Foundation of China (Grant No. 52192612, 52192610). The authors are thankful for the support from the University of Electronic Science and Technology of China (Grant No. ZYGX2021YGCX001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baohua Teng, Lijie Li or Yan Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2334 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Nie, J., Teng, B. et al. High-efficiency piezo-phototronic solar cells by strain-induced polarization. MRS Bulletin 49, 91–99 (2024). https://doi.org/10.1557/s43577-023-00623-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00623-3

Keywords

Navigation