Skip to main content

Advertisement

Log in

On the metastability of silicon heterojunction solar photovoltaic modules

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Silicon heterojunction (SHJ) solar modules gained strong interest from solar photovoltaic (PV) module manufacturers and in the global market due to their high-efficiency potential. However, the presence of an amorphous silicon layer in SHJ structures raises concerns about their stability under light exposure. In this article, we compare the stability of SHJ modules to the stability of p-type and n-type homojunction monocrystalline silicon modules and of several thin-film PV technologies. The analysis is performed in intermediate precision conditions of measurement, where the same modules are measured indoors with the same measurement procedure, same location and equipment, and over an extended period of time, during which the modules are kept stored and not exposed to light. The results from all tested SHJ modules, which were also confirmed in reproducibility conditions, show a slow exponential degradation in the dark, which is fully recovered when the module is subsequently light-soaked. With this behavior, SHJ modules recall the metastability of certain thin-film technologies.

Impact statement

The relevance of solar PV energy in the global electricity generation mix is at the present time unquestionable and all energy outlooks now report PV as a key player in the next decades for the transition toward a decarbonized energy system. When transferred into the manufacturing and deployment phase, the ambitious solar PV targets meet, among others, the challenge of accurate and reliable power rating of the PV modules, for which differences of a fraction of a percent mean significant investment gains or losses for the manufacturers, investors, and final users. The factors that mainly affect the uncertainty of PV power rating in the production line are the accuracy in the calibration of the reference modules and their temporal stability. Among other PV technologies, SHJ, with an efficiency that now goes beyond 22% at the module level and is expected to increase further, is the fastest gaining in market share (estimated to hit 10% by 2024 and 20% by 2032). However, the observed “metastability” (i.e., the change of the electrical performance to a status with lower or higher stable power when the module is stored in the dark for a prolonged period of time), which is discussed in this article for commercial SHJ modules, although not affecting the field performance, may impact the production capacity and should be carefully addressed by SHJ module manufacturers, researchers, and testing laboratories.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. International Energy Agency (IEA), World Energy Outlook 2021 (IEA, Paris, 2021)

  2. International Renewable Energy Agency (IRENA), World Energy Transitions Outlook 2022 (IRENA, 2022)

  3. S. Henbest, M. Kimmel, J. Callens, A. Vasdev, T. Brandily, I. Berryman, J. Danial, B. Vickers, New Energy Outlook 2021 (Bloomberg, 2021)

  4. J.C. Blakesley, T. Huld, H. Müllejans, A. Gracia-Amillo, G. Friesen, T.R. Betts, W. Hermann, Sol. Energy 203, 91 (2020)

    Article  Google Scholar 

  5. E. Dunlop, F. Fabero, G. Friesen, W. Herrmann, J. Hohl-Ebinger, H-D. Mohring, H. Müllejans, A. Virtuani, W. Warta, W. Zaaiman, S. Zamini, Guidelines for PV Power Measurement in Industry (Technical Report EUR 24359 EN, European Union, Luxembourg, 2010)

  6. “Why High-Precision Measurement Is So Important for Photovoltaic (PV) Modules,” TÜV Rheinland Blog (2018). https://insights.tuv.com/blog

  7. M. Pravettoni, D. Poh, J.P. Singh, J.W. Ho, K. Nakayashiki, J. Phys. D Appl. Phys. 54(19), 193001 (2021)

    Article  CAS  Google Scholar 

  8. Y. Rao Golive, A. Kottantharayil, N. Shiradkar, Sol. Energy 237, 203 (2022)

    Article  Google Scholar 

  9. D.C. Jordan, S.R. Kurtz, K. VanSant, J. Newmiller, Prog. Photovolt. 24, 978 (2016)

    Article  Google Scholar 

  10. D.C. Jordan, T.J. Silverman, J.H. Wohlgemuth, S.R. Kurtz, K.T. VanSant, Prog. Photovolt. 25, 318 (2017)

    Article  CAS  Google Scholar 

  11. D.C. Jordan, K. Anderson, K. Perry, M. Muller, M. Deceglie, R. White, C. Deline, Prog. Photovolt. 30(10), 1166 (2022)

  12. D. Staebler, C. Wronski, Appl. Phys. Lett. 31, 292 (1977)

    Article  CAS  Google Scholar 

  13. M. Stutzmann, W.B. Jackson, C.C. Tsai, Phys. Rev. B 32(1), 23 (1985)

    Article  CAS  Google Scholar 

  14. M.C. Rossi, M.S. Brandt, M. Stutzmann, Appl. Phys. Lett. 60(14), 1709 (1992)

    Article  CAS  Google Scholar 

  15. H. Fritzsche, Annu. Rev. Mater. Res. 31(1), 47 (2001)

    Article  CAS  Google Scholar 

  16. R. Biswas, B.C. Pan, Sol. Energy Mater. Sol. Cells 78(1–4), 447 (2003)

    Article  CAS  Google Scholar 

  17. V. Nádazdy, M. Zeman, Phys. Rev. B 69(16), 165213 (2004)

    Article  Google Scholar 

  18. J.A. del Cueto, B. von Roedern, Prog. Photovolt. 7(2), 101 (1999)

    Article  Google Scholar 

  19. A. Klaver, R.A.C.M.M. van Swaaij, Sol. Energy Mater. Sol. Cells 92(1), 50 (2008)

    Article  CAS  Google Scholar 

  20. Y. Wang, X. Geng, H. Stiebig, F. Finger, Thin Solid Films 516(5), 733 (2008)

    Article  CAS  Google Scholar 

  21. B. Yan, G. Yue, J.M. Owens, J. Yang, S. Guha, Appl. Phys. Lett. 85(11), 1925 (2004)

    Article  CAS  Google Scholar 

  22. G. Yue, B. Yan, G. Ganguly, J. Yang, S. Guha, C.W. Teplin, Appl. Phys. Lett. 88(26), 263507 (2006)

    Article  Google Scholar 

  23. M. Gostein, L. Dunn, “Light Soaking Effects on Photovoltaic Modules: Overview and Literature Review,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Seattle, June 20–25, 2011), pp. 003126–003131

  24. J.A. del Cueto, B. von Roedern, Prog. Photovolt. 14(7), 615 (2006)

    Article  Google Scholar 

  25. S.E. Asher, F.S. Hasoon, T.A. Gessert, M.R. Young, P. Sheldon, J. Hiltner, J. Sites, “Determination of Cu in CdTe/CdS Devices Before and After Accelerated Stress Testing,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Anchorage, September 15–22, 2000), pp. 479–482

  26. T.A. Gessert, S. Smith, T. Moriarty, M. Young, S. Asher, S. Johnston, A. Duda, C. DeHart, A.L. Fahrenbruch, “Evolution of CdS/CdTe Device Performance During Cu Diffusion,” in Proceedings of the 31st IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Lake Buena Vista, January 3–7, 2005), pp. 291–294

  27. C.R. Corwine, A.O. Pudov, M. Gloeckler, S.H. Demtsu, J.R. Sites, Sol. Energy Mater. Sol. Cells 82(4), 481 (2004)

    CAS  Google Scholar 

  28. A.O. Pudov, M. Gloeckler, S.H. Demtsu, J.R. Sites, K.L. Barth, R.A. Enzenroth, W.S. Sampath, “Effect of Back-Contact Copper Concentration on CdTe Cell Operation,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, New Orleans, May 19–24, 2002), pp. 760–763

  29. S.H. Demtsu, J.R. Sites, Thin Solid Films 510(1–2), 320 (2006)

    Article  CAS  Google Scholar 

  30. K. L. Barth, R.A. Enzenroth, W.S. Sampath, “Consistent Processing and Long Term Stability of CdTe Devices,” in Proceedings of the 31st IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Lake Buena Vista, January 3–7, 2005), pp. 323–326

  31. U. Rau, H.W. Schock, Appl. Phys. A 69, 131 (1999)

    Article  CAS  Google Scholar 

  32. F. Engelhardt, M. Schmidt, T. Meyer, O. Seifert, J. Parisi, U. Rau, Phys. Lett. A 245(5), 489 (1998)

    Article  CAS  Google Scholar 

  33. D. Willett, S. Kuriyagawa, “The Effects of Sweep Rate, Voltage Bias and Light Soaking on the Measurement of CIS-Based Solar Cell Characteristics,” in Proceedings of the 23rd IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Louisville, May 10–14, 1993), pp. 495–500

  34. J.A. del Cueto, S. Rummel, B. Kroposki, C. Osterwald, A. Anderberg, “Study of CIS/CIGS Modules at the Outdoor Test Facility Over Two Decades,” in Proceedings of the 33rd IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, San Diego, May 11–16, 2008), pp. 1–6

  35. T. Yanagisawa, T. Kojima, Sol. Energy Mater. Sol. Cells 77(1), 83 (2003)

    Article  CAS  Google Scholar 

  36. C. Deline, J. del Cueto, D.S. Albin, C. Petersen, L. Tyler, G. TamizhMani, “Transient Response of Cadmium Telluride Modules to Light Exposure,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC) (Seattle, June 20–25, 2011), pp. 3113–3118

  37. M. Nikolaeva-Dimitrova, R.P. Kenny, E.D. Dunlop, M. Pravettoni, Prog. Photovolt. 18(5), 311 (2010)

    Article  Google Scholar 

  38. E. Kobayashi, S. De Wolf, J. Levrat, A. Descoeudres, M. Despeisse, F.-J. Haug, C. Ballif, Sol. Energy Mater. Sol. Cells 173, 43 (2017)

    Article  CAS  Google Scholar 

  39. J. Cattin, L.-L. Senaud, J. Haschke, B. Paviet-Salomon, M. Despeisse, C. Ballif, M. Boccard, IEEE J. Photovolt. 11(3), 575 (2021)

    Article  Google Scholar 

  40. J. Veirman, J.S. Caron, P. Jeronimo, T. Gageot, A.J. Kinfack Leoga, A.S. Ozanne, S. De Vecchi, R. Soulas, W. Favre, A. Ragonesi, L. Carbone, M. Sciuto, A. Voltan, Sol. Energy Mater. Sol. Cells 245, 111867 (2022)

    Article  CAS  Google Scholar 

  41. W. Liu, J. Shi, L. Zhang, A. Han, S. Huang, X. Li, J. Peng, Y. Yang, Y. Gao, J. Yu, K. Jiang, X. Yang, Z. Li, W. Zhao, J. Du, X. Song, J. Yin, J. Wang, Y. Yu, Q. Shi, Z. Ma, H. Zhang, J. Ling, L. Xu, J. Kang, F. Xu, J. Liu, H. Liu, Y. Xie, F. Meng, S. De Wolf, F. Laquai, Z. Di, Z. Liu, Nat. Energy 7, 427 (2022)

    Article  CAS  Google Scholar 

  42. M. Wright, B. Vicari Stefani, A. Soeriyadi, R. Basnet, C. Sun, W. Weigand, Z. Yu, Z. Holman, D. Macdonald, B. Hallam, Phys. Status Solidi Rapid Res. Lett. 15, 2100170 (2021)

    Article  CAS  Google Scholar 

  43. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, IEEE J. Photovolt. 4(1), 96 (2014)

    Article  Google Scholar 

  44. Panasonic Corporation, “Panasonic Photovoltaic Module Achieves World’s Highest Energy Conversion Efficiency of 23.8% at Research Level.” https://news.panasonic.com/global/press/en160302-2. Press release, March 2, 2016

  45. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res. Appl. 24, 905 (2016)

    Article  Google Scholar 

  46. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Prog. Photovolt. Res. Appl. 25, 3 (2017)

    Article  Google Scholar 

  47. International Technology Roadmap for Photovoltaics (ITRPV), 13th edn. (VDMA, March 2021). www.itrpv.vdma.org

  48. International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM), 3rd edn. (JCGM 200, 2012)

  49. H. Muellejans, W. Zaaiman, R. Galleano, Meas. Sci. Technol. 20(7), 075101 (2009)

    Article  Google Scholar 

  50. C.N. Kruse, M. Wolf, C. Schinke, D. Hinken, R. Brendel, K. Bothe, Energy Procedia 124, 84 (2017)

    Article  Google Scholar 

  51. International Electrotechnical Commission (IEC), Terrestrial Photovoltaic (PV) Modules - Design Qualification and Type Approval - Part 2: Test Procedures, edn. 2.0 (IEC 61215-2, Geneva, 2021)

  52. M. Pravettoni, C. Deline, G. Arnoux, K. Berger, C. Fell, E. Garcia Goma, A. Halm, W. Herrmann, D. Hu, M. Joanny, K. Lee, J. Levrat, J. Lopez Garcia, G. Mei, C. Monokruossos, R. Roldán, A. Schmidt, H. Tobita, B. Van Aken, L. Votta, S. Wendlandt, M. Yoshita, Presented at the 5th BiFiPV Workshop, Denver, September 11, 2018

  53. Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison, edn. 3.0 (ISO 13528, 2022)

Download references

Acknowledgments

SERIS is a research institute at the National University of Singapore (NUS). SERIS is supported by NUS, the National Research Foundation Singapore (NRF), the Energy Market Authority of Singapore (EMA), and the Singapore Economic Development Board (EDB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Pravettoni.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pravettoni, M., Rajput, A.S. On the metastability of silicon heterojunction solar photovoltaic modules. MRS Bulletin 48, 809–817 (2023). https://doi.org/10.1557/s43577-023-00475-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00475-x

Keywords

Navigation