Skip to main content

Advertisement

Log in

TEM-based phase characterization of U–19Pu–10Zr irradiated in ATR

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article reports the results of the microstructural examination of the irradiated U–19Pu–10Zr fuel. New insights gained using selective area electron diffraction analysis in a transmission electron microscope provide crystallographic information on the phases previously identified based primarily on the chemical compositions. After irradiation, the microstructure of the fuel separates into γ-(U, Pu, Zr) in the central region with a secondary nanocrystalline UO2 phase, γ-(U, Pu, Zr) with a secondary ZrO2 phase in the intermediate, and ζ-(U, Pu) in the outer regions. While the surface microstructural features and porosity indicate separation into three concentric zones consistent with the existing constituent redistribution model, crystallographically the fuel consists of two zones: inner (with γ-(U, Pu, Zr) as a matrix phase) and outer (with ζ-(U, Pu) as a matrix phase). Our results highlight the importance of crystal structure in phase identification and can be used to supplement the existing constituent redistribution model.

Impact statement

Metal fuels are an excellent fuel choice for generation four (Gen IV) fast reactors because of their high heavy metal density and excellent thermal conductivity. Understanding phases and phase relationships in U–Pu–Zr fuels is critical for understanding fuel behavior because constituent redistribution, fission gas release, swelling, and melting or formation of liquid phases all fundamentally depend on the phases present in the fuel. Multiple phases exist in U–Pu–Zr fuels before and after irradiation and the phases evolve throughout the life of the fuel pin. This study provides novel insights into phases present in irradiated U–Pu–Zr fuels and expands our current understanding of the constituent redistribution. These findings are critical for advancing the basic understanding of metal fuel behaviors because they have the unique and powerful potential to improve uranium utilization and economics, facilitate breed and burn fuel management, and increase safety, which is essential for the future of nuclear energy. Considering the global push for clean energy, one must not discard nuclear energy, which has zero emissions, small land footprint, and minimal waste as compared to other energy sources. Of the existing concepts, metal fuels are considered to be more technologically mature and thus should be prioritized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The data will be made available upon reasonable request.

References

  1. N.E. Stauff, F. Heidet, “Assessment of Low Enriched Uranium Fueled Core Configurations for the Versatile Test Reactor,” presented at the American Nuclear Society Annual Meeting (Minneapolis, June 9–13, 2019), OSTI.GOV; 1528969

  2. TerraPower, NatriumTM Reactor and Integrated Energy Storage (2022)

  3. J. Hirschhorn, M. Tonks, C. Matthews, J. Nucl. Mater. 544, 152657 (2021). https://doi.org/10.1016/j.jnucmat.2020.152657

    Article  CAS  Google Scholar 

  4. T. Ogata, “Metal Fuel,” in Comprehensive Nuclear Materials, Volume 3: Advanced Fuels/Fuel Cladding/Nuclear Fuel Performance Modeling and Simulation, ed. by R.J.M. Konings (Elsevier, Amsterdam, 2012), pp. 1–40. https://doi.org/10.1016/B978-0-08-056033-5.00049-5

  5. T. Ogata, Y.S. Kim, A.M. Yacout, “Metal Fuel Performance Modeling and Simulation,” in Comprehensive Nuclear Materials, Volume 3, Advanced Fuel Cladding/Nuclear Fuel Performance Modeling and Simulation, ed. by R.J.M. Konings, R.E. Stoller (Elsevier, Amsterdam, 2012), pp. 713–753

    Google Scholar 

  6. W.F. Murphy, W.N. Beck, F.L. Brown, B.J. Koprowski, L.A. Neimark, Postirradiation Examination of U–Pu–Zr Fuel Elements Irradiated in EBR-II to 4.5 Atomic Percent Burnup (Technical Report No. ANL-7602, Office of Scientific and Technical Information [OSTI], Argonne National Laboratory, Argonne, 1969). https://doi.org/10.2172/4169781

  7. Y.H. Sohn, M.A. Dayananda, G.L. Hofman, R.V. Strain, S.L. Hayes, J. Nucl. Mater. 279, 317 (2000). https://doi.org/10.1016/S0022-3115(99)00290-1

    Article  CAS  Google Scholar 

  8. D.L. Porter, C.E. Lahm, R.G. Pahl, Metall. Trans. A 21, 1871 (1990). https://doi.org/10.1007/BF02647234

    Article  Google Scholar 

  9. D.E. Janney, Metallic Fuels Handbook, Part 1 and Part 2 (Technical Report No. INL/EXT-15-36520-Rev003, Idaho National Lab, Idaho Falls, 2018)

  10. T. Ogata, Y.S. Kim, A. Yacout, “Metal Fuel Performance Modeling and Simulation,” in Comprehensive Nuclear Materials, Volume 5, Advanced Fuel Concepts, Research Reactor Fuels, and Space Applications, 2nd edn., ed. by R.J.M. Konings, R.E. Stoller (Elsevier, Amsterdam, 2020), pp. 43–87

    Google Scholar 

  11. D.R. O’Boyle, A.E. Dwight, “The Uranium-Plutonium-Zirconium Ternary Alloy System,” in Plutonium 1970 and Other Actinides, Nuclear Metallurgy Volume 17, Part II, Proceedings of the 4th International Conference on Plutonium and Other Actinides, ed. by W.M. Miner (Metallurgical Society of AIME, Warrendale, 1970), p. 720

  12. S.S. Hecker, Los Alamos. Sci. 26, 128 (2000)

  13. D.E. Janney, S.L. Hayes, C.A. Adkins, Nucl. Technol. 205, 1387 (2019). https://doi.org/10.1080/00295450.2019.1578573

    Article  Google Scholar 

  14. K.E. Wright, J.M. Harp, L. Capriotti, J. Nucl. Mater. 526, 151745 (2019). https://doi.org/10.1016/j.jnucmat.2019.151745

    Article  CAS  Google Scholar 

  15. M. Ishida, T. Ogata, M. Kinoshita, Nucl. Technol. 104, 37 (1993). https://doi.org/10.13182/NT93-A34868

    Article  CAS  Google Scholar 

  16. Y.S. Kim, G.L. Hofman, S.L. Hayes, Y.H. Sohn, J. Nucl. Mater. 327, 27 (2004). https://doi.org/10.1016/j.jnucmat.2004.01.012

    Article  CAS  Google Scholar 

  17. Y.S. Kim, S.L. Hayes, G.L. Hofman, A.M. Yacout, J. Nucl. Mater. 359, 17 (2006). https://doi.org/10.1016/j.jnucmat.2006.07.013

    Article  CAS  Google Scholar 

  18. J. Galloway, C. Unal, N. Carlson, D. Porter, S. Hayes, Nucl. Eng. Des. 286, 1 (2015). https://doi.org/10.1016/j.nucengdes.2015.01.014

    Article  CAS  Google Scholar 

  19. F.H. Ellinger, Trans. Am. Inst. Min. Metall. Pet. Eng. 206, 1256 (1956)

    Google Scholar 

  20. P. Chiotti, H.H. Klepfer, R.W. White, Trans. Am. Soc. Met. 51, 772 (1959)

    Google Scholar 

  21. A. Heiming, W. Petry, J. Trampenau, W. Miekeley, J. Cockcroft, J. Phys. 4, 727 (1992). https://doi.org/10.1088/0953-8984/4/3/012

    Article  CAS  Google Scholar 

  22. A. Aitkaliyeva, J.W. Madden, B.D. Miller, C.A. Papesch, J.I. Cole, J. Nucl. Mater. 467, 717 (2015). https://doi.org/10.1016/j.jnucmat.2015.10.043

    Article  CAS  Google Scholar 

  23. J. McFarlane, “Fission Product Tellurium Chemistry from Fuel to Containment,” in Proceedings of the 4th CSNI Workshop on the Chemistry of Iodine in Reactor Safety, ed. by S. Güntay (Würenlingen, June 10–12, 1996 ), p. 563

  24. J. McFarlane, J.C. LeBlanc, Fission-Product Tellurium and Cesium Telluride Chemistry Revisited (Technical Report AECL-11333, COG-95-276-1, Atomic Energy of Canada Ltd., Whiteshell Laboratories, Manitoba, 1996)

  25. A. Aitkaliyeva, J.W. Madden, C.A. Papesch, J.I. Cole, J. Nucl. Mater. 473, 75 (2016). https://doi.org/10.1016/j.jnucmat.2016.02.022

    Article  CAS  Google Scholar 

  26. T. Yao, L. Capriotti, J.M. Harp, X. Liu, Y. Wang, F. Teng, D.J. Murray, A.J. Winston, J. Gan, M.T. Benson, L. He, J. Nucl. Mater. 542, 152536 (2020). https://doi.org/10.1016/j.jnucmat.2020.152536

    Article  CAS  Google Scholar 

  27. A. Aitkaliyeva, C.A. Adkins, J. Hirschhorn, C. McKinney, M.R. Tonks, F.G. Di Lemma, J. Nucl. Mater. 523, 80 (2019). https://doi.org/10.1016/j.jnucmat.2019.05.051

    Article  CAS  Google Scholar 

  28. T. Yao, A. Sen, A. Wagner, F. Teng, M. Bachhav, A. EI-Azab, D. Murray, J. Gan, D.H. Hurley, J.P. Wharry, M.T. Benson, L. He, Materialia (Oxford) 16, 101092 (2021). https://doi.org/10.1016/j.mtla.2021.101092

    Article  CAS  Google Scholar 

  29. T. Yao, A.R. Wagner, X. Liu, A. EI-Azab, J.M. Harp, J. Gan, D.H. Hurley, M.T. Benson, L. He, Materialia (Oxford) 9, 100592 (2020). https://doi.org/10.1016/j.mtla.2020.100592

    Article  CAS  Google Scholar 

  30. L. Leibowitz, R.A. Blomquist, A.D. Pelton, J. Nucl. Mater. 184, 59 (1991). https://doi.org/10.1016/0022-3115(91)90533-D

    Article  CAS  Google Scholar 

  31. M. Kurata, CALPHAD 23, 305 (1999). https://doi.org/10.1016/S0364-5916(00)00004-3

    Article  CAS  Google Scholar 

  32. M. Kurata, IOP Conf. Ser. Mater. Sci. Eng. 9, 012022 (2010). https://doi.org/10.1088/1757-899X/9/1/012022

    Article  CAS  Google Scholar 

  33. F.H. Ellinger, R.O. Elliott, E.M. Cramer, J. Nucl. Mater. 1, 233 (1959). https://doi.org/10.1016/0022-3115(59)90019-4

    Article  CAS  Google Scholar 

  34. J.A.C. Marples, J. Phys. Chem. Solids 25, 521 (1964). https://doi.org/10.1016/0022-3697(64)90140-4

    Article  CAS  Google Scholar 

  35. V.I. Khitrova, V.V. Klechkovskaya, Sov. Phys. Crystallogr.  30, 70 (1985)

    Google Scholar 

  36. L. Desgranges, G. Baldinozzi, G. Rousseau, J.-C. Ni, G. Calvarin, Inorg. Chem. 48, 7585 (2009). https://doi.org/10.1021/ic9000889

    Article  CAS  Google Scholar 

  37. F. Canepa, G.A. Costa, E.A. Franceschi, Lanthan. Actin. Res. 1, 41 (1985)

    CAS  Google Scholar 

  38. J. Li, H.Y. Guo, D.M. Proserpio, A. Sironi, J. Solid State Chem. 117, 247 (1995). https://doi.org/10.1006/JSSC.1995.1270

    Article  CAS  Google Scholar 

  39. W. Qin, T. Nagase, Y. Umakoshi, Acta Mater. 57, 1300 (2009). https://doi.org/10.1016/J.ACTAMAT.2008.11.009

    Article  CAS  Google Scholar 

  40. G. Xie, L. Shao, D.V. Louzguine-Luzgin, A. Inoue, Surf. Coat. Technol. 206, 829 (2011). https://doi.org/10.1016/J.SURFCOAT.2011.04.002

    Article  CAS  Google Scholar 

  41. O. El-Atwani, E. Esquivel, M. Efe, E. Aydogan, Y.Q. Wang, E. Martinez, S.A. Maloy, Acta Mater. 149, 206 (2018). https://doi.org/10.1016/J.ACTAMAT.2018.02.035

    Article  CAS  Google Scholar 

  42. M. Myers, E.G. Fu, M. Myers, H. Wang, G. Xie, X. Wang, W.K. Chu, L. Shao, Scr. Mater. 63, 1045 (2010). https://doi.org/10.1016/J.SCRIPTAMAT.2010.07.027

    Article  CAS  Google Scholar 

  43. Z. Shang, J. Ding, C. Fan, D. Chen, J. Li, Y. Zhang, Y. Wang, H. Wang, X. Zhang, Acta Mater. 196, 175 (2020). https://doi.org/10.1016/J.ACTAMAT.2020.06.019

    Article  CAS  Google Scholar 

  44. X. Tan, L. Luo, H. Chen, X. Zhu, X. Zan, G. Luo, J. Chen, P. Li, J. Cheng, D. Liu, Y. Wu, Sci. Rep. 5, 12755 (2015). https://doi.org/10.1038/srep12755

    Article  CAS  Google Scholar 

  45. V.V. Trinadh, P. Manikandan, S. Bera, S. Ghosh, C.V.S. Brahmananda Rao, T.S. Lakshmi Narasimhan, M. Joseph, J. Nucl. Mater. 539, 152251 (2020). https://doi.org/10.1016/J.JNUCMAT.2020.152251

    Article  CAS  Google Scholar 

  46. D.E. Janney, J.R. Kennedy, Mater. Charact. 61, 1194 (2010). https://doi.org/10.1016/J.MATCHAR.2010.07.012

    Article  CAS  Google Scholar 

  47. G.L. Hofman, R.G. Pahl, C.E. Lahm, D.L. Porter, Metall. Trans. A 21, 517 (1990). https://doi.org/10.1007/BF02671924

    Article  Google Scholar 

  48. D.E. Janney, Metallic Fuels Handbook, Part 1 and Part 2 (Technical Report No. INL/EXT-15-36520-Rev003, Idaho National Lab, Idaho Falls, 2018)

  49. T. Yao, X. Liu, Y. Wang, F. Teng, D.J. Murray, M. Meyer, M.T. Benson, L. Capriotti, J. Nucl. Mater. 568, 153846 (2022). https://doi.org/10.1016/J.JNUCMAT.2022.153846

    Article  CAS  Google Scholar 

  50. J.M. Harp, H.J.M. Chichester, L. Capriotti, J. Nucl. Mater. 509, 377 (2018). https://doi.org/10.1016/J.JNUCMAT.2018.07.003

    Article  CAS  Google Scholar 

  51. J.M. Harp, L. Capriotti, H.J.M. Chichester, P.G. Medvedev, D.L. Porter, S.L. Hayes, J. Nucl. Mater. 509, 454 (2018). https://doi.org/10.1016/J.JNUCMAT.2018.07.019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract No. DE-AC07-051D14517 as part of a Nuclear Science User Facilities experiment. A.A.’s time was covered by the Idaho National Laboratory joint appointment supported by the Fuel Cycle Research and Development Program (FCRD). Special thank you to M. Mika and A. Rabin for their help with editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assel Aitkaliyeva.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahn, T., Miller, B.D., Capriotti, L. et al. TEM-based phase characterization of U–19Pu–10Zr irradiated in ATR. MRS Bulletin 48, 351–360 (2023). https://doi.org/10.1557/s43577-022-00422-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00422-2

Keywords

Navigation