Skip to main content
Log in

Correlative atom probe tomography and optical spectroscopy: An original gateway to materials science and nanoscale physics

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Atom probe tomography (APT) correlated with optical spectroscopy has yielded original results in the domain of semiconductor nanoscale heterostructures. Statistical correlation (i.e., microscopy correlated with spectroscopy performed on macroscopic samples) has opened the way to a deeper understanding of carrier localization and recombination mechanisms in quantum-well systems. However, photoluminescence spectroscopy (PL) can be performed even on APT samples fabricated by focused ion beam, making it possible to perform sequential correlations on a single nanoscale object, which allows for a higher precision and accuracy. Finally, the laser pulse used for triggering the evaporation in laser-assisted APT can also generate a photoluminescence signal: this opportunity is exploited in the photonic atom probe. This instrument not only represents an original and effective way to perform in situ correlative microscopy, but also opens the way to study nanoscale physical phenomena driven by field, stress, or sample shape via the interpretation of the dynamically acquired APT and PL information.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. L.J. Lauhon, P. Adusumilli, P. Ronsheim, P.L. Flaitz, D. Lawrence, MRS Bull. 34(10), 738 (2009). https://doi.org/10.1557/mrs2009.248

    Article  CAS  Google Scholar 

  2. A.D. Giddings, S. Koelling, Y. Shimizu, R. Estivill, K. Inoue, W. Vandervorst, W.K. Yeoh, Scr. Mater. 148, 82 (2018). https://doi.org/10.1016/j.scriptamat.2017.09.004

    Article  CAS  Google Scholar 

  3. A. Devaraj, R. Colby, W.P. Hess, D.E. Perea, S. Thevuthasan, J. Phys. Chem. Lett. 4, 993 (2013). https://doi.org/10.1021/jz400015h

    Article  CAS  Google Scholar 

  4. K. Stiller, L. Viskari, G. Sundell, F. Liu, M. Thuvander, H.-O. Andrén, D.J. Larson, T. Prosa, D. Reinhard, Oxid. Met. 79, 227 (2013). https://doi.org/10.1007/s11085-012-9330-6

    Article  CAS  Google Scholar 

  5. F. Letellier, L. Lechevallier, R. Lardé, J.-M. Le Breton, K. Akmaldinov, S. Auffret, B. Dieny, V. Baltz, J. Appl. Phys. 116, 203906 (2014). https://doi.org/10.1063/1.4902954

    Article  CAS  Google Scholar 

  6. L. Amichi, I. Mouton, E. Di Russo, V. Boureau, F. Barbier, A. Dussaigne, A. Grenier, P.-H. Jouneau, C. Bougerol, D. Cooper, J. Appl. Phys. 127, 065702 (2020). https://doi.org/10.1063/1.5125188

    Article  CAS  Google Scholar 

  7. O.G. Licata, B. Mazumder, Int. J. High Speed Electron. Syst. 28, 79 (2019). https://doi.org/10.1142/9789811216480_0005

    Article  Google Scholar 

  8. A. Stoffers, J. Barthel, C.H. Liebscher, B. Gault, O. Cojocaru-Mirédin, C. Scheu, D. Raabe, Microsc. Microanal. 23, 291 (2017). https://doi.org/10.1017/S1431927617000034

    Article  CAS  Google Scholar 

  9. M. Herbig, D. Raabe, Y.J. Li, P. Choi, S. Zaefferer, S. Goto, Phys. Rev. Lett. 112, 126103 (2014). https://doi.org/10.1103/PhysRevLett.112.126103

    Article  CAS  Google Scholar 

  10. L. Rigutti, I. Blum, D. Shinde, D. Hernández-Maldonado, W. Lefebvre, J. Houard, F. Vurpillot, A. Vella, M. Tchernycheva, C. Durand, J. Eymery, B. Deconihout, Nano Lett. 14, 107 (2014). https://doi.org/10.1021/nl4034768

    Article  CAS  Google Scholar 

  11. A. Stoffers, O. Cojocaru-Mirédin, W. Seifert, S. Zaefferer, S. Riepe, D. Raabe, Prog. Photovolt. Res. Appl. 23, 1742 (2015). https://doi.org/10.1002/pip.2614

    Article  CAS  Google Scholar 

  12. Z. Sun, O. Hazut, B.-C. Huang, Y.-P. Chiu, C.-S. Chang, R. Yerushalmi, L.J. Lauhon, D.N. Seidman, Nano Lett. 16, 4490 (2016). https://doi.org/10.1021/acs.nanolett.6b01693

    Article  CAS  Google Scholar 

  13. J. Houard, A. Normand, E. Di Russo, C. Bacchi, P. Dalapati, G. Beainy, S. Moldovan, G. Da Costa, F. Delaroche, C. Vaudolon, J.M. Chauveau, M. Hugues, D. Blavette, B. Deconihout, A. Vella, F. Vurpillot, L. Rigutti, Rev. Sci. Instrum. 91, 083704 (2020). https://doi.org/10.1063/5.0012359

    Article  CAS  Google Scholar 

  14. M.J. Galtrey, R.A. Oliver, M.J. Kappers, C.J. Humphreys, D.J. Stokes, P.H. Clifton, A. Cerezo, Appl. Phys. Lett. 90, 061903 (2007). https://doi.org/10.1063/1.2431573

    Article  CAS  Google Scholar 

  15. M.J. Galtrey, R.A. Oliver, M.J. Kappers, C. McAleese, D. Zhu, C.J. Humphreys, P.H. Clifton, D. Larson, A. Cerezo, Appl. Phys. Lett. 92, 041904 (2008). https://doi.org/10.1063/1.2829592

    Article  CAS  Google Scholar 

  16. C. Weisbuch, S. Nakamura, Y.-R. Wu, J.S. Speck, Nanophotonics 10, 3 (2021). https://doi.org/10.1515/nanoph-2020-0590

    Article  CAS  Google Scholar 

  17. F. Tang, T. Zhu, F. Oehler, W.Y. Fu, J.T. Griffiths, F.C.-P. Massabuau, M.J. Kappers, T.L. Martin, P.A.J. Bagot, M.P. Moody, R.A. Oliver, Appl. Phys. Lett. 106, 072104 (2015). https://doi.org/10.1063/1.4909514

    Article  CAS  Google Scholar 

  18. F. Tang, T. Zhu, W.-Y. Fu, F. Oehler, S. Zhang, J.T. Griffiths, C. Humphreys, T.L. Martin, P.A.J. Bagot, M.P. Moody, S.K. Patra, S. Schulz, P. Dawson, S. Church, J. Jacobs, R.A. Oliver, J. Appl. Phys. 125, 225704 (2019). https://doi.org/10.1063/1.5097411

    Article  CAS  Google Scholar 

  19. N. Jeon, B. Loitsch, S. Morkoetter, G. Abstreiter, J. Finley, H.J. Krenner, G. Koblmueller, L.J. Lauhon, ACS Nano 9, 8335 (2015). https://doi.org/10.1021/acsnano.5b04070

    Article  CAS  Google Scholar 

  20. M. Roussel, E. Talbot, F. Gourbilleau, P. Pareige, Nanoscale Res. Lett. 6, 164 (2011). https://doi.org/10.1186/1556-276X-6-164

    Article  CAS  Google Scholar 

  21. G. Beainy, J. Weimmerskirch-Aubatin, M. Stoffel, M. Vergnat, H. Rinnert, C. Castro, P. Pareige, E. Talbot, J. Appl. Phys. 118, 234308 (2015). https://doi.org/10.1063/1.4938061

    Article  CAS  Google Scholar 

  22. G. Beainy, J. Weimmerskirch-Aubatin, M. Stoffel, M. Vergnat, H. Rinnert, P. Pareige, E. Talbot, J. Phys. Chem. C 121, 12447 (2017). https://doi.org/10.1021/acs.jpcc.7b03199

    Article  CAS  Google Scholar 

  23. L. Mancini, Y. Fontana, S. Conesa-Boj, I. Blum, F. Vurpillot, L. Francaviglia, E. Russo-Averchi, M. Heiss, J. Arbiol, A. Fontcuberta i Morral, L. Rigutti, Appl. Phys. Lett. 105, 243106 (2014). https://doi.org/10.1063/1.4904952

    Article  CAS  Google Scholar 

  24. L. Mancini, F. Moyon, D. Hernàndez-Maldonado, I. Blum, J. Houard, W. Lefebvre, F. Vurpillot, A. Das, E. Monroy, L. Rigutti, Nano Lett. 17, 4261 (2017). https://doi.org/10.1021/acs.nanolett.7b01189

    Article  CAS  Google Scholar 

  25. L. Mancini, D. Hernández-Maldonado, W. Lefebvre, J. Houard, I. Blum, F. Vurpillot, J. Eymery, C. Durand, M. Tchernycheva, L. Rigutti, Appl. Phys. Lett. 108, 042102 (2016). https://doi.org/10.1063/1.4940748

    Article  CAS  Google Scholar 

  26. E. Di Russo, P. Dalapati, J. Houard, L. Venturi, I. Blum, S. Moldovan, N. Le Biavan, D. Lefebvre, M. Hugues, J.M. Chauveau, D.C. Blavette, B. Deconihout, A. Vella, F. Vurpillot, L. Rigutti, Nano Lett. 20, 8733 (2020). https://doi.org/10.1021/acs.nanolett.0c03584

    Article  CAS  Google Scholar 

  27. E.P. Silaeva, L. Arnoldi, M.L. Karahka, B. Deconihout, A. Menand, H.J. Kreuzer, A. Vella, Nano Lett. 14, 6066 (2014). https://doi.org/10.1021/nl502715s

    Article  CAS  Google Scholar 

  28. P. Dalapati, G. Beainy, E. Di Russo, I. Blum, J. Houard, S. Moldovan, A. Vella, F. Vurpillot, N. Le Biavan, M. Hugues, J.M. Chauveau, L. Rigutti, Phys. Rev. Appl. 15, 024014 (2021). https://doi.org/10.1103/PhysRevApplied.15.024014

    Article  CAS  Google Scholar 

  29. L. Rigutti, L. Venturi, J. Houard, A. Normand, E.P. Silaeva, M. Borz, S.A. Malykhin, A.N. Obraztsov, A. Vella, Nano Lett. 17, 7401 (2017). https://doi.org/10.1021/acs.nanolett.7b03222

    Article  CAS  Google Scholar 

  30. L. Mancini, N. Amirifar, D. Shinde, I. Blum, M. Gilbert, A. Vella, F. Vurpillot, W. Lefebvre, R. Lardé, E. Talbot, P. Pareige, X. Portier, A. Ziani, C. Davesnne, C. Durand, J. Eymery, R. Butté, J.-F. Carlin, N. Grandjean, L. Rigutti, J. Phys. Chem. C 118, 24136 (2014). https://doi.org/10.1021/jp5071264

    Article  CAS  Google Scholar 

  31. E. Di Russo, F. Moyon, N. Gogneau, L. Largeau, E. Giraud, J.-F. Carlin, N. Grandjean, J.M. Chauveau, M. Hugues, I. Blum, W. Lefebvre, F. Vurpillot, D. Blavette, L. Rigutti, J. Phys. Chem. C 122, 16704 (2018). https://doi.org/10.1021/acs.jpcc.8b03223

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the French National Research Agency (ANR) in the framework of the projects EMC3 Labex AQURATE, EMC3 Labex IDEPOP, and ANR-21-CE50-0016 ASCESE-3D, and co-funded in the framework of RIN IFROST, EMC3 Labex IDEPOP, and CPER BRIDGE projects by the European Union with the European Regional Development Fund (ERDF) and by Region Normandie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Rigutti.

Ethics declarations

Conflict of interest

No conflict of interests applies to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Russo, E., Rigutti, L. Correlative atom probe tomography and optical spectroscopy: An original gateway to materials science and nanoscale physics. MRS Bulletin 47, 727–735 (2022). https://doi.org/10.1557/s43577-022-00367-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00367-6

Navigation