Skip to main content
Log in

Poly-l-Lysine-functionalized fluorescent diamond particles: pH triggered fluorescence enhancement via surface charge modulation

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Recently, the interest in applying fluorescent diamond particles (FDPs) containing nitrogen-vacancy (NV) centers for enhancing the mechanical and chemical properties of some materials, biological imaging, and sensing has been expanding rapidly. The unique properties of NV centers such as intensive, time-stable fluorescence, and an electron spin, which exhibits long coherence time and may be manipulated using external stimuli, such as pH, make them a perfect candidate for a quantum-effect-based sensing platform. However, monitoring of the local changes with the use of the nonmodified diamond particles has certain limitations; therefore, to enhance their sensing properties, in this article, the covalent functionalization of the FDPs’ surfaces with poly-l-Lysine (pLys) (NV-pLys) is presented. The FDPs’ surface is functionalized in an anhydrous environment, and successful attachment is confirmed by Fourier transform infrared spectroscopy (FTIR). As the pLys undergoes pH-triggered changes of conformation, it also induces changes in the diamonds’ surface charge, therefore modulating the fluorescence, and finally as a result enhances NV-pLys pH-sensitivity. Further investigation of the zeta potential, particle size, and contact angle reveals remarkable colloidal stability and superior wettability of the NV-pLys over a wide range of pH, which also may significantly affect NV-pLys biocompatibility. These findings open new possibilities for the construction of biocompatible, stable, and highly sensitive nanosensors.

Impact statement

Fluorescent diamond particles (FDPs) containing negatively charged nitrogen-vacancy (NV) color centers due to their distinctive nature are widely used in many disciplines, including biomedicine. Therefore, it becomes increasingly important to find and ascertain the aspects of NV centers’ behavior in a variety of environments before utilizing them as biosensors, or imaging agents. In this article, we have analyzed the NV centers’ behavior in a wide pH range. To improve the FDPs’ sensing properties (widen the measurable pH range), we have covalently functionalized the FDPs’ surface using poly-l-Lysine (pLys). Apart from enhanced pH sensitivity, further investigation reveals remarkable colloidal stability and superior wettability of the pLys-functionalized FDPs over a wide range of pH, which indicated improved biocompatibility. Presented here, surface modification may prepare the diamonds to work in the cellular environment (e.g., as part of an implant), favoring early stages of cell adhesion. Furthermore, it opens new possibilities for the construction of biocompatible, stable, and highly sensitive nanosensors with great potential for use in high-impact medical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within the and from the corresponding authors upon reasonable request.

References

  1. N. Nunn, M. Torelli, G. McGuire, O. Shenderova, Curr. Opin. Solid State Mater. Sci. 21(1), 1 (2017). https://doi.org/10.1016/j.cossms.2016.06.008

    Article  CAS  Google Scholar 

  2. Y. Ruan, D.A. Simpson, J. Jeske, H. Ebendorff-Heidepriem, D.W.M. Lau, H. Ji, B.C. Johnson, T. Ohshima, V.S. Afshar, L. Hollenberg, A.D. Greentree, T.M. Monro, B.C. Gibson, Sci. Rep. 8, 1268 (2018). https://doi.org/10.1038/s41598-018-19400-3

    Article  CAS  Google Scholar 

  3. S. Hsieh, P. Bhattacharyya, C. Zu, T. Mittiga, T.J. Smart, F. Machado, B. Kobrin, N.Z. Rui, M. Kamrani, S. Chatterjee, S. Choi, M. Zaletel, V.V. Struzhkin, J.E. Moore, V.I. Levitas, R. Jeanloz, N.Y. Yao, Science 366, 1349 (2019)

    Article  CAS  Google Scholar 

  4. G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nature 500, 4 (2013). https://doi.org/10.1038/nature12373

    Article  CAS  Google Scholar 

  5. Y. Wu, N.A. Alam, P. Balasubramanian, A. Ermakova, S. Fischer, H. Barth, M. Wagner, M. Raabe, F. Jelezko, T. Weil, Nano Lett. 21, 3780 (2021). https://doi.org/10.1021/acs.nanolett.1c00043

    Article  CAS  Google Scholar 

  6. G. Reina, L. Zhao, A. Bianco, N. Komatsu, Angew. Chem. Int. Ed. 58, 17918 (2019). https://doi.org/10.1002/anie.201905997

    Article  CAS  Google Scholar 

  7. Z. Mi, C.-B. Chen, H.Q. Tan, Y. Dou, C. Yang, S.P. Turaga, M. Ren, S.K. Vajandar, G.H. Yuen, T. Osipowicz, F. Watt, A.A. Bettiol, Nat. Commun. 12, 4567 (2021). https://doi.org/10.1038/s41467-021-25004-9

    Article  CAS  Google Scholar 

  8. W.W. Hsiao, Y.Y. Hui, P. Tsai, H. Chang, Acc. Chem. Res. 49, 400 (2016). https://doi.org/10.1021/acs.accounts.5b00484

    Article  CAS  Google Scholar 

  9. X. Wu, M. Bruschi, T. Waag, S. Schweeberg, Y. Tian, T. Meinhardt, R. Stigler, K. Larsson, M. Funk, D. Steinmüller-Nethl, M. Rasse, A. Krueger, J. Mater. Chem. B 5, 6629 (2017). https://doi.org/10.1039/c7tb00723j

    Article  CAS  Google Scholar 

  10. L. Grausova, L. Bacakova, A. Kromka, S. Potocky, M. Vanecek, M. Nesladek, V. Lisa, J. Nanosci. Nanotechnol. 9, 3524 (2009). https://doi.org/10.1166/jnn.2009.NS26

    Article  CAS  Google Scholar 

  11. J.R. Casey, S. Grinstein, J. Orlowski, Nat. Rev. Mol. Cell Biol. 11, 50 (2009). https://doi.org/10.1038/nrm2820

    Article  CAS  Google Scholar 

  12. J. Jo, C.H. Lee, R. Kopelman, X. Wang, Nat. Commun. (2017). https://doi.org/10.1038/s41467-017-00598-1

    Article  Google Scholar 

  13. F. Yu, O. Addison, S.J. Baker, A.J. Davenport, Int. J. Oral Sci. 7, 179 (2015). https://doi.org/10.1038/ijos.2014.76

    Article  CAS  Google Scholar 

  14. M. Fujiwara, R. Tsukahara, Y. Sera, H. Yukawa, Y. Baba, S. Shikata, H. Hashimoto, RSC Adv. 9, 12606 (2019). https://doi.org/10.1039/c9ra02282a

    Article  CAS  Google Scholar 

  15. T. Fujisaku, R. Tanabe, S. Onoda, R. Kubota, T.F. Segawa, T. Ohshima, I. Hamachi, M. Shirakawa, R. Igarashi, ACS Nano 13, 11726 (2019). https://doi.org/10.1021/acsnano.9b05342

    Article  CAS  Google Scholar 

  16. M. Sow, H. Steuer, S. Adekanye, L. Ginés, S. Mandal, B. Gilboa, O.A. Williams, J.M. Smith, A.N. Kapanidis, High-throughput detection and manipulation of single nitrogen-vacancy center’s charge in nanodiamonds. ArXiv. (2019), pp. 1–42

  17. T. Rendler, J. Neburkova, O. Zemek, J. Kotek, A. Zappe, Z. Chu, P. Cigler, J. Wrachtrup, Nat. Commun. (2017). https://doi.org/10.1038/ncomms14701

    Article  Google Scholar 

  18. H. Raabova, D. Chvatil, P. Cigler, Nanoscale 29, 18537 (2019). https://doi.org/10.1039/c9nr03710a

    Article  CAS  Google Scholar 

  19. R.A. Gittens, L. Scheideler, F. Rupp, S.L. Hyzy, J. Geis-Gerstorfer, Z. Schwartz, B.D. Boyan, Acta Biomater. 10, 2907 (2014). https://doi.org/10.1016/j.actbio.2014.03.032

    Article  CAS  Google Scholar 

  20. V. Vaijayanthimala, Y.K. Tzeng, H.C. Chang, C.L. Li, Nanotechnology (2009). https://doi.org/10.1088/0957-4484/20/42/425103

    Article  Google Scholar 

  21. E.K. Chow, E.K. Chow, X. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, D. Ho, Sci. Transl. Med. (2011). https://doi.org/10.1126/scitranslmed.3001713

    Article  Google Scholar 

  22. Y. Xing, W. Xiong, L. Zhu, E. Osawa, S. Hussin, L. Dai, ACS Nano 5, 2376 (2011). https://doi.org/10.1021/nn200279k

    Article  CAS  Google Scholar 

  23. X. Zhang, J. Yin, C. Kang, J. Li, Y. Zhu, W. Li, Q. Huang, Z. Zhu, Toxicol. Lett. 198, 237 (2019). https://doi.org/10.1016/j.toxlet.2010.07.001

    Article  CAS  Google Scholar 

  24. D.R. Tasat, M.E. Bruno, M. Domingo, P. Gurman, O. Auciello, L. Paparella, P. Evelson, B. Guglielmotti, D.G. Olmedo, J. Biomed. Mater. Res. B Appl. Biomater. (2016). https://doi.org/10.1002/jbm.b.33777

    Article  Google Scholar 

  25. N. Daum, C. Tscheka, A. Neumeyer, M. Schneider, WIREs Nanomed. Nanobiotechnol. 4, 52 (2012). https://doi.org/10.1002/wnan.165

    Article  CAS  Google Scholar 

  26. D. Zhang, Y. Zhang, L. Zheng, Y. Zhan, L. He, Biosens. Bioelectron. 42, 112 (2013). https://doi.org/10.1016/j.bios.2012.10.057

    Article  CAS  Google Scholar 

  27. R. Kaur, J.M. Chitanda, D. Michel, J. Maley, F. Borondics, P. Yang, R.E. Verrall, I. Badea, Int. J. Nanomed. 7, 3851 (2012). https://doi.org/10.2147/IJN.S32877

    Article  CAS  Google Scholar 

  28. L.C.L. Huang, H.C. Chang, Langmuir 20, 5879 (2004). https://doi.org/10.1021/la0495736

    Article  CAS  Google Scholar 

  29. S. Alwani, R. Kaur, D. Michel, J.M. Chitanda, R.E. Verrall, C. Karunakaran, I. Badea, Int. J. Nanomed. 11, 687 (2016). https://doi.org/10.2147/IJN.S92218

    Article  CAS  Google Scholar 

  30. N. Raval, R. Maheshwari, D. Kalyane, S.R. Youngren-Ortiz, M.B. Chougule, R.K. Tekade, “Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development,” in Basic Fundamentals of Drug Delivery, R.K. Tekade, Ed. (Elsevier, Amsterdam, 2019), chap. 10. https://doi.org/10.1016/B978-0-12-817909-3.00010-8

  31. T. Dąbrowa, A. Wcisło, W. Majstrzyk, P. Niedziałkowski, T. Ossowski, W. Więckiewicz, T. Gotszalk, J. Mech. Behav. Biomed. Mater. (2021). https://doi.org/10.1016/j.jmbbm.2021.104648

    Article  Google Scholar 

  32. A. Wcisło, J. Ryl, R. Bogdanowicz, A. Cirocka, D. Zarzecza, B. Finke, T. Ossowski, Electrochim. Acta 313, 432 (2019). https://doi.org/10.1016/j.electacta.2019.05.046

    Article  CAS  Google Scholar 

  33. M. Rozenberg, G. Shoham, I. Reva, R. Fausto, Phys. Chem. Chem. Phys. 7, 2376 (2005)

    Article  CAS  Google Scholar 

  34. M. Rozenberg, G. Shoham, Biophys. Chem. 125, 166 (2007). https://doi.org/10.1016/j.bpc.2006.07.008

    Article  CAS  Google Scholar 

  35. T. Ando, K. Yamamoto, M. Ishii, M. Kamo, Y. Sato, J. Chem. Soc. Faraday Trans. 89, 3635 (1993)

    Article  CAS  Google Scholar 

  36. V.Y. Dolmatov, I.I. Kulakova, V. Myllymäki, A. Vehanen, A.A. Bochechka, A.N. Panova, B.T.T. Nguyen, J. Superhard Mater. 38, 58 (2016). https://doi.org/10.3103/S1063457616010093

    Article  Google Scholar 

  37. F.Y. Xie, W.G. Xie, L. Gong, W.H. Zhang, S.H. Chen, Q.Z. Zhang, J. Chen, Surf. Interface Anal. 42, 1514 (2010)

    Article  CAS  Google Scholar 

  38. M. Ariraman, R. Sasikumara, M. Alagar, RSC Adv. 5, 69720 (2015)

    Article  CAS  Google Scholar 

  39. P. Niedziałkowski, T. Ossowski, P. Zięba, A. Cirocka, P. Rochowski, S.J. Pogorzelski, J. Ryl, M. Sobaszek, R. Bogdanowicz, J. Electroanal. Chem. 756, 84 (2015)

    Article  Google Scholar 

  40. V. Petrakova, I. Rehor, J. Stursa, M. Ledvina, M. Nesladek, P. Cigler, Nanoscale 7, 12307 (2015). https://doi.org/10.1039/c5nr00712g

    Article  CAS  Google Scholar 

  41. L. Ginés, S. Mandal, C. Cheng, M. Sow, O.A. Williams, Nanoscale 9, 12549 (2017). https://doi.org/10.1039/c7nr03200e

    Article  CAS  Google Scholar 

  42. S.O. Olayiwola, M. Dejam, Fuel 241, 1045 (2019). https://doi.org/10.1016/j.fuel.2018.12.122

    Article  CAS  Google Scholar 

  43. P. Niedziałkowski, M. Bojko, J. Ryl, A. Wcisło, M. Spodzieja, K. Magiera-Mularz, K. Guzik, G. Dubin, T.A. Holak, T. Ossowski, S. Rodziewicz-Motowidło, Bioelectrochemistry 139, 107742 (2021). https://doi.org/10.1016/j.bioelechem.2021.107742

    Article  CAS  Google Scholar 

  44. V. Chakrapani, J.C. Angus, A.B. Anderson, S.D. Wolter, B.R. Stoner, G.U. Sumanasekera, Science (2007). https://doi.org/10.1126/science.1148841

    Article  Google Scholar 

Download references

Acknowledgments

This research work is supported by the National Science Centre, Poland, under Grant No. 2016/21/B/ST7/01430, and the Foundation for Polish Science within the “TEAM-NET” project carried out within the POIR.04.04.00-00-1644/18 programme co-financed by the European Union under the European Regional Development Fund. R.B. gratefully acknowledges financial support from the National Science Centre under Project No. UMO-2020/01/0/ST7/00104. M.J. acknowledges the support from the Foundation for Polish Science within the START 2021 program. The authors would like to gratefully acknowledge R. Carano and C. Dessy from Testa Analytical Solutions (Germany) for carrying out the measurements of the zeta potential of carboxylated diamonds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Janik.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janik, M., Głowacki, M.J., Sawczak, M. et al. Poly-l-Lysine-functionalized fluorescent diamond particles: pH triggered fluorescence enhancement via surface charge modulation. MRS Bulletin 47, 1011–1022 (2022). https://doi.org/10.1557/s43577-022-00326-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00326-1

Keywords

Navigation