Skip to main content

Advertisement

Log in

Accelerated discovery of porous materials for carbon capture by machine learning: A review

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In the past decades, greenhouse gases (e.g., anthropogenic CO2 and CH4) have raised significant concerns due to the foreseeable dire consequences in climate change. Capturing them via adsorption using porous materials has drawn much attention due to their low synthesis and regeneration cost and high capacity. Recently, the flourishing machine learning (ML) has been introduced to various fields of materials science, which also has shown great potential in accelerating the materials discovery for carbon capture. In this article, we first describe the general workflow of applying ML to tackle materials problems. Then we systematically summarize the recent research progress in the application of ML for development of porous carbon and metal–organic frameworks for carbon capture. Finally, we discuss the existing challenges, possible solutions, and research directions. This article will inspire exploration of new frontiers in the carbon capture by development of ML in porous materials research in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Reproduced with permission from Reference 33. © 2019 American Chemical Society. (d) Architecture of the convolutional neural networks (CNNs). Reproduced with permission from Reference 35. © 2020 Wiley. (e) Relative importance of textural properties (TP), chemical composition (CC), and pressure (P) at different pressure range in the CO2 uptake in the porous carbon. Reproduced with permission from Reference 18. © 2020 Elsevier.

Figure 3

Reproduced with permission from Reference 46. © 2021 American Chemical Society. (b) Schematic of the automated reticular framework discovery platform empowered by the SmVAE. Reproduced with permission from Reference 47. © 2021 Springer Nature.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. R. Snoeckx, A. Bogaerts, Chem. Soc. Rev. 46, 5805 (2017)

    Article  CAS  Google Scholar 

  2. R.L. Siegelman, E.J. Kim, J.R. Long, Nat. Mater. 20, 1060 (2021)

    Article  CAS  Google Scholar 

  3. E.S. Sanz-Pérez, C.R. Murdock, S.A. Didas, C.W. Jones, Chem. Rev. 116, 11840 (2016)

    Article  CAS  Google Scholar 

  4. J.C.M. Pires, F.G. Martins, M.C.M. Alvim-Ferraz, M. Simões, Chem. Eng. Res. Des. 89, 1446 (2011)

    Article  CAS  Google Scholar 

  5. F. Vega, F.M. Baena-Moreno, L.M. Gallego Fernández, E. Portillo, B. Navarrete, Z. Zhang, Appl. Energy 260, 114313 (2020)

    Article  CAS  Google Scholar 

  6. M. Liu, M.D. Nothling, P.A. Webley, J. Jin, Q. Fu, G.G. Qiao, Chem. Eng. J. 396, 125328 (2020)

    Article  CAS  Google Scholar 

  7. C. Song, Q. Liu, S. Deng, H. Li, Y. Kitamura, Renew. Sustain. Energy Rev. 101, 265 (2019)

    Article  CAS  Google Scholar 

  8. R. Ben-Mansour, M.A. Habib, O.E. Bamidele, M. Basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui, M. Ali, Appl. Energy 161, 225 (2016)

    Article  CAS  Google Scholar 

  9. G. Singh, J. Lee, A. Karakoti, R. Bahadur, J. Yi, D. Zhao, K. AlBahily, A. Vinu, Chem. Soc. Rev. 49, 4360 (2020)

    Article  CAS  Google Scholar 

  10. A.S. Jalilov, Y. Li, C. Kittrell, J.M. Tour, Nat. Energy 2, 932 (2017)

    Article  CAS  Google Scholar 

  11. P.G. Boyd, A. Chidambaram, E. García-Díez, C.P. Ireland, T.D. Daff, R. Bounds, A. Gładysiak, P. Schouwink, S.M. Moosavi, M.M. Maroto-Valer, J.A. Reimer, J.A.R. Navarro, T.K. Woo, S. Garcia, K.C. Stylianou, B. Smit, Nature 576, 253 (2019)

    Article  CAS  Google Scholar 

  12. L.-C. Lin, A.H. Berger, R.L. Martin, J. Kim, J.A. Swisher, K. Jariwala, C.H. Rycroft, A.S. Bhown, M.W. Deem, M. Haranczyk, B. Smit, Nat. Mater. 11, 633 (2012)

    Article  CAS  Google Scholar 

  13. S. Loganathan, M. Tikmani, S. Edubilli, A. Mishra, A.K. Ghoshal, Chem. Eng. J. 256, 1 (2014)

    Article  CAS  Google Scholar 

  14. W. Wang, M. Zhou, D. Yuan, J. Mater. Chem. A 5, 1334 (2017)

    Article  CAS  Google Scholar 

  15. M. Tong, Y. Lan, Q. Yang, C. Zhong, Green Energy Environ. 3, 107 (2018)

    Google Scholar 

  16. B. Kim, S. Lee, J. Kim, Sci. Adv. 6, eaax9324 (2020)

    Article  CAS  Google Scholar 

  17. Y. Dong, C. Wu, C. Zhang, Y. Liu, J. Cheng, J. Lin, npj Comput. Mater. 5, 26 (2019)

    Article  CAS  Google Scholar 

  18. X. Zhu, D.C.W. Tsang, L. Wang, Z. Su, D. Hou, L. Li, J. Shang, J. Clean. Prod. 273, 122915 (2020)

    Article  CAS  Google Scholar 

  19. H. Wang, Y. Xie, D. Li, H. Deng, Y. Zhao, M. Xin, J. Lin, J. Chem. Inf. Model. 60, 2004 (2020)

    Article  CAS  Google Scholar 

  20. Y. Xie, C. Zhang, X. Hu, C. Zhang, S.P. Kelley, J.L. Atwood, J. Lin, J. Am. Chem. Soc. 142, 1475 (2020)

    Article  CAS  Google Scholar 

  21. A.H. Farmahini, S. Krishnamurthy, D. Friedrich, S. Brandani, L. Sarkisov, Chem. Rev. 121, 10666 (2021)

    Article  CAS  Google Scholar 

  22. Y. Yan, T.N. Borhani, S.G. Subraveti, K.N. Pai, V. Prasad, A. Rajendran, P. Nkulikiyinka, J.O. Asibor, Z. Zhang, D. Shao, L. Wang, W. Zhang, Y. Yan, W. Ampomah, J. You, M. Wang, E.J. Anthony, V. Manovic, P.T. Clough, Energy Environ. Sci. 14, 6122 (2021)

    Article  CAS  Google Scholar 

  23. S.M. Moosavi, A. Chidambaram, L. Talirz, M. Haranczyk, K.C. Stylianou, B. Smit, Nat. Commun. 10, 539 (2019)

    Article  CAS  Google Scholar 

  24. A.S. Krishnapriyan, J. Montoya, M. Haranczyk, J. Hummelshøj, D. Morozov, Sci. Rep. 11, 8888 (2021)

    Article  CAS  Google Scholar 

  25. Y.G. Chung, E. Haldoupis, B.J. Bucior, M. Haranczyk, S. Lee, H. Zhang, K.D. Vogiatzis, M. Milisavljevic, S. Ling, J.S. Camp, B. Slater, J.I. Siepmann, D.S. Sholl, R.Q. Snurr, J. Chem. Eng. Data 64, 5985 (2019)

    Article  CAS  Google Scholar 

  26. E.L. First, C.A. Floudas, Microporous Mesoporous Mater. 165, 32 (2013)

    Article  CAS  Google Scholar 

  27. M. O’Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, Acc. Chem. Res. 41, 1782 (2008)

    Article  CAS  Google Scholar 

  28. Y. Liu, T. Zhao, W. Ju, S. Shi, J. Materiomics 3, 159 (2017)

    Article  Google Scholar 

  29. J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, npj Comput. Mater. 5, 83 (2019)

    Article  Google Scholar 

  30. J. Kim, D. Kang, S. Kim, H.W. Jang, ACS Materials Lett. 3, 1151 (2021)

    Article  CAS  Google Scholar 

  31. G. Singh, K.S. Lakhi, S. Sil, S.V. Bhosale, I. Kim, K. Albahily, A. Vinu, Carbon 148, 164 (2019)

    Article  CAS  Google Scholar 

  32. Z. Zhang, J.A. Schott, M. Liu, H. Chen, X. Lu, B.G. Sumpter, J. Fu, S. Dai, Angew. Chem. Int. Ed. 58, 259 (2019)

    Article  CAS  Google Scholar 

  33. S. Wang, Z. Zhang, S. Dai, D.-E. Jiang, ACS Materials Lett. 1, 558 (2019)

    Article  CAS  Google Scholar 

  34. C. Zhang, D. Li, Y. Xie, D. Stalla, P. Hua, D.T. Nguyen, M. Xin, J. Lin, Fuel 290, 120080 (2021)

    Article  CAS  Google Scholar 

  35. S. Wang, Y. Li, S. Dai, D.-E. Jiang, Angew. Chem. Int. Ed. 59, 19645 (2020)

    Article  CAS  Google Scholar 

  36. D. Saha, M.J. Kienbaum, Microporous Mesoporous Mater. 287, 29 (2019)

    Article  CAS  Google Scholar 

  37. C. Altintas, O.F. Altundal, S. Keskin, R. Yildirim, J. Chem. Inf. Model. 61, 2131 (2021)

    Article  CAS  Google Scholar 

  38. B. Li, S. Wang, Z. Tian, G. Yao, H. Li, L. Chen, Adv. Theory Simul. 5, 2100378 (2022)

    Article  CAS  Google Scholar 

  39. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341, 1230444 (2013)

    Article  CAS  Google Scholar 

  40. A. Ahmed, S. Seth, J. Purewal, A.G. Wong-Foy, M. Veenstra, A.J. Matzger, D.J. Siegel, Nat. Commun. 10, 1568 (2019)

    Article  CAS  Google Scholar 

  41. D. Alezi, Y. Belmabkhout, M. Suyetin, P.M. Bhatt, ŁJ. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P.N. Trikalitis, A.-H. Emwas, M. Eddaoudi, J. Am. Chem. Soc. 137, 13308 (2015)

    Article  CAS  Google Scholar 

  42. C. Altintas, G. Avci, H. Daglar, A. Nemati Vesali Azar, S. Velioglu, I. Erucar, S. Keskin, ACS Appl. Mater. Interfaces 10, 17257 (2018)

    Article  CAS  Google Scholar 

  43. M. Fernandez, P.G. Boyd, T.D. Daff, M.Z. Aghaji, T.K. Woo, J. Phys. Chem. Lett. 5(17), 3056 (2014)

    Article  CAS  Google Scholar 

  44. J. Burner, L. Schwiedrzik, M. Krykunov, J. Luo, P.G. Boyd, T.K. Woo, J. Phys. Chem. C 124, 27996 (2020)

    Article  CAS  Google Scholar 

  45. G.S. Fanourgakis, K. Gkagkas, E. Tylianakis, G.E. Froudakis, J. Am. Chem. Soc. 142, 3814 (2020)

    Article  CAS  Google Scholar 

  46. X. Zhang, K. Zhang, H. Yoo, Y. Lee, ACS Sustain. Chem. Eng. 9, 2872 (2021)

    Article  CAS  Google Scholar 

  47. Z. Yao, B. Sánchez-Lengeling, N.S. Bobbitt, B.J. Bucior, S.G.H. Kumar, S.P. Collins, T. Burns, T.K. Woo, O.K. Farha, R.Q. Snurr, A. Aspuru-Guzik, Nat. Mach. Intell. 3, 76 (2021)

    Article  Google Scholar 

  48. A. Schoedel, M. Li, D. Li, M. O’Keeffe, O.M. Yaghi, Chem. Rev. 116, 12466 (2016)

    Article  CAS  Google Scholar 

  49. A.S. Jalilov, Y. Li, J. Tian, J.M. Tour, Adv. Energy Mater. 7, 1600693 (2017)

    Article  CAS  Google Scholar 

  50. L. Rao, S. Liu, L. Wang, C. Ma, J. Wu, L. An, X. Hu, Chem. Eng. J. 359, 428 (2019)

    Article  CAS  Google Scholar 

  51. R. Kwok, Nature 560, 269 (2018)

    Article  CAS  Google Scholar 

  52. S.G. Higgins, A.A. Nogiwa-Valdez, M.M. Stevens, Nat. Protoc. 17, 179 (2022)

    Article  CAS  Google Scholar 

  53. E.A. Olivetti, J.M. Cole, E. Kim, O. Kononova, G. Ceder, T.Y.-J. Han, A.M. Hiszpanski, Appl. Phys. Rev. 7, 1041317 (2020)

    Article  CAS  Google Scholar 

  54. E. Kim, K. Huang, A. Saunders, A. McCallum, G. Ceder, E. Olivetti, Chem. Mater. 29, 9436 (2017)

    Article  CAS  Google Scholar 

  55. R. Ma, Y.J. Colón, T. Luo, ACS Appl. Mater. Interfaces 12, 34041 (2020)

    Article  CAS  Google Scholar 

  56. F. Oviedo, Z. Ren, S. Sun, C. Settens, Z. Liu, N.T.P. Hartono, S. Ramasamy, B.L. DeCost, S.I.P. Tian, G. Romano, A. Gilad Kusne, T. Buonassisi, npj Comput. Mater. 5, 60 (2019)

    Article  CAS  Google Scholar 

  57. B. Ma, X. Wei, C. Liu, X. Ban, H. Huang, H. Wang, W. Xue, S. Wu, M. Gao, Q. Shen, M. Mukeshimana, A.O. Abuassba, H. Shen, Y. Su, npj Comput. Mater. 6, 125 (2020)

    Article  Google Scholar 

  58. S. Zinchik, S. Jiang, S. Friis, F. Long, L. Høgstedt, V.M. Zavala, E. Bar-Ziv, ACS Sustainable Chem. Eng. 9, 14143 (2021)

    Article  CAS  Google Scholar 

  59. T.-Y. Huang, J.C.C. Yu, Anal. Chem. 93, 8889 (2021)

    Article  CAS  Google Scholar 

  60. P. Yang, H. Zhang, X. Lai, K. Wang, Q. Yang, D. Yu, ACS Omega 6, 17149 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the University of Missouri, National Science Foundation (Award Nos. 1825352 and 1933861), and National Natural Science Foundation of China (Award Nos. 61875256 and 61925506).

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunchao Xie or Jian Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xie, Y., Xie, C. et al. Accelerated discovery of porous materials for carbon capture by machine learning: A review. MRS Bulletin 47, 432–439 (2022). https://doi.org/10.1557/s43577-022-00317-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00317-2

Keywords

Navigation