Skip to main content

Advertisement

Log in

Ionic liquids for carbon capture

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article covers cutting-edge research in ionic liquid-based materials and their impact on carbon capture. Ionic liquids boast high thermal stability, low vapor pressure, and great tunability. They can be deployed as either sorbents or supported liquid membranes for carbon capture and other gas separations. Absorption of CO2 in ionic liquids can be achieved via physisorption or chemisorption, depending on the strength of the interaction. For physisorption, both CO2-anion and cation–anion interactions are important factors in dictating CO2 solubility. For chemisorption, the reactivity with CO2 can be tuned by the basicity of the anion while the stability of the ionic liquid can be enhanced by controlling the cation. Marrying ionicity of ionic liquids with porosity leads to novel porous ionic liquids that feature unique properties for facilitating gas transport, while interfacing ionic liquids with microporous membranes allow the ions to gate the pores for selective gas transport. Composite materials of ionic liquids with crystalline materials such as metal–organic frameworks offer scalable heterogeneous interfaces to promote selectivity. Future opportunities include controlling the interaction with CO2 and its transport at the charged or electrified interface with the ionic-liquid electric double layer, as well as combining CO2 capture and conversion with ionic liquids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

© 2016 Royal Society of Chemistry.

Figure 2

© 2010 Elsevier. (d) Reprinted with permission from Reference 28. © 2011 American Chemical Society. (e) Reprinted with permission from Reference 29. © 2014 American Chemical Society. (f) Reprinted with permission from Reference 30. © 2014 Royal Society of Chemistry.

Figure 3

© 2015 American Chemical Society.

Figure 4

© 2010 Wiley. (d, e) Reprinted with permission from Reference 43. © 2014 American Chemical Society.

Figure 5

© 2016 Wiley.

Figure 6

© 2007 Wiley. (b) Reprinted with permission from Reference 47. © 2020 Wiley. (c) Reprinted with permission from Reference 48. © 2018 American Chemical Society.

Figure 7

© 2017 American Chemical Society. (d–f) Reprinted with permission from Reference 50. © 2020 Elsevier.

Figure 8

© 2018 American Chemical Society.

Similar content being viewed by others

References

  1. T. Welton, Chem. Rev. 99, 2071 (1999)

    Article  CAS  Google Scholar 

  2. S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Chem. Rev. 117, 9625 (2017)

    Article  CAS  Google Scholar 

  3. R.D. Rogers, K.R. Seddon, Science 302, 792 (2003)

    Article  Google Scholar 

  4. P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 39, 3772 (2000)

    Article  CAS  Google Scholar 

  5. Z. Lei, B. Chen, Y.-M. Koo, D.R. MacFarlane, Chem. Rev. 117, 6633 (2017)

    Article  CAS  Google Scholar 

  6. D.R. MacFarlane, N. Tachikawa, M. Forsyth, J.M. Pringle, P.C. Howlett, G.D. Elliott, J.H. Davis, M. Watanabe, P. Simon, C.A. Angell, Energy Environ. Sci. 7, 232 (2014)

    Article  CAS  Google Scholar 

  7. X. Wang, M. Salari, D.-e Jiang, J. Chapman Varela, B. Anasori, D.J. Wesolowski, S. Dai, M.W. Grinstaff, Y. Gogotsi, Nat. Rev. Mater. 5, 787 (2020)

    Article  CAS  Google Scholar 

  8. M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Chem. Rev. 117, 7190 (2017)

    Article  CAS  Google Scholar 

  9. J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Chem. Commun. 1765 (1998)

  10. S. Dai, Y.H. Ju, C.E. Barnes, J. Chem. Soc. Dalton Trans. 1201 (1999)

  11. X. Sun, H. Luo, S. Dai, Chem. Rev. 112, 2100 (2012)

    Article  CAS  Google Scholar 

  12. S.P.M. Ventura, F.A. e Silva, M.V. Quental, D. Mondal, M.G. Freire, J.A.P. Coutinho, Chem. Rev. 117, 6984 (2017)

    Article  CAS  Google Scholar 

  13. L.C. Tomé, I.M. Marrucho, Chem. Soc. Rev. 45, 2785 (2016)

    Article  Google Scholar 

  14. L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Nature 399, 28 (1999)

    Article  Google Scholar 

  15. L.A. Blanchard, J.F. Brennecke, Ind. Eng. Chem. Res. 40, 287 (2001)

    Article  CAS  Google Scholar 

  16. G.T. Rochelle, Science 325, 1652 (2009)

    Article  CAS  Google Scholar 

  17. L.J. Lozano, C. Godínez, A.P. de los Ríos, F.J. Hernández-Fernández, S. Sánchez-Segado, F.J. Alguacil, J. Membr. Sci. 376, 1 (2011)

    Article  CAS  Google Scholar 

  18. P. Scovazzo, J. Kieft, D.A. Finan, C. Koval, D. DuBois, R. Noble, J. Membr. Sci. 238, 57 (2004)

    Article  CAS  Google Scholar 

  19. S.M. Mahurin, J.S. Lee, G.A. Baker, H. Luo, S. Dai, J. Membr. Sci. 353, 177 (2010)

    Article  CAS  Google Scholar 

  20. A. Klemm, Y.-Y. Lee, H. Mao, B. Gurkan, Front. Chem. 8, 637 (2020)

    Article  CAS  Google Scholar 

  21. J.L. Anthony, E.J. Maginn, J.F. Brennecke, J. Phys. Chem. B 106, 7315 (2002)

    Article  CAS  Google Scholar 

  22. J.L. Anderson, J.K. Dixon, J.F. Brennecke, Acc. Chem. Res. 40, 1208 (2007)

    Article  CAS  Google Scholar 

  23. M.B. Shiflett, A. Yokozeki, Ind. Eng. Chem. Res. 44, 4453 (2005)

    Article  CAS  Google Scholar 

  24. A. Yokozeki, M.B. Shiflett, C.P. Junk, L.M. Grieco, T. Foo, J. Phys. Chem. B 112, 16654 (2008)

    Article  CAS  Google Scholar 

  25. E. Wilhelm, R. Battino, Chem. Rev. 73, 1 (1973)

    Article  CAS  Google Scholar 

  26. J.J. Carroll, J.D. Slupsky, A.E. Mather, J. Phys. Chem. Ref. Data 20, 1201 (1991)

    Article  CAS  Google Scholar 

  27. C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, J. Am. Chem. Soc. 126, 5300 (2004)

    Article  CAS  Google Scholar 

  28. R. Babarao, S. Dai, D.-e Jiang, J. Phys. Chem. B 115, 9789 (2011)

    Article  CAS  Google Scholar 

  29. H. Liu, S. Dai, D.-e Jiang, Ind. Eng. Chem. Res. 53, 10485 (2014)

    Article  CAS  Google Scholar 

  30. H. Liu, S. Dai, D.-e Jiang, Phys. Chem. Chem. Phys. 16, 1909 (2014)

    Article  CAS  Google Scholar 

  31. K. Huang, Y.-T. Wu, S. Dai, Ind. Eng. Chem. Res. 54, 10126 (2015)

    Article  CAS  Google Scholar 

  32. C.M. Teague, S. Dai, D.-e Jiang, J. Phys. Chem. A 114, 11761 (2010)

    Article  CAS  Google Scholar 

  33. S. Chu, A. Majumdar, Nature 488, 294 (2012)

    Article  CAS  Google Scholar 

  34. C. Wang, X. Luo, H. Luo, D.-e Jiang, H. Li, S. Dai, Angew. Chem. Int. Ed. 50, 4918 (2011)

    Article  CAS  Google Scholar 

  35. E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, J. Am. Chem. Soc. 124, 926 (2002)

    Article  CAS  Google Scholar 

  36. B.E. Gurkan, J.C. de la Fuente, E.M. Mindrup, L.E. Ficke, B.F. Goodrich, E.A. Price, W.F. Schneider, J.F. Brennecke, J. Am. Chem. Soc. 132, 2116 (2010)

    Article  CAS  Google Scholar 

  37. E.M. Mindrup, W.F. Schneider, Ionic Liquids: From Knowledge to Application (American Chemical Society, Washington, DC, 2009), p. 419

    Google Scholar 

  38. C. Wang, H. Luo, D.-e Jiang, H. Li, S. Dai, Angew. Chem. Int. Ed. 49, 5978 (2010)

    Article  CAS  Google Scholar 

  39. C. Wang, H. Luo, H. Li, X. Zhu, B. Yu, S. Dai, Chem. Eur. J. 18, 2153 (2012)

    Article  CAS  Google Scholar 

  40. G. Gurau, H. Rodríguez, S.P. Kelley, P. Janiczek, R.S. Kalb, R.D. Rogers, Angew. Chem. Int. Ed. 50, 12024 (2011)

    Article  CAS  Google Scholar 

  41. S. Seo, M.A. DeSilva, J.F. Brennecke, J. Phys. Chem. B 118, 14870 (2014)

    Article  CAS  Google Scholar 

  42. K.E. Gutowski, E.J. Maginn, J. Am. Chem. Soc. 130, 14690 (2008)

    Article  CAS  Google Scholar 

  43. S. Seo, M. Quiroz-Guzman, M.A. DeSilva, T.B. Lee, Y. Huang, B.F. Goodrich, W.F. Schneider, J.F. Brennecke, J. Phys. Chem. B 118, 5740 (2014)

    Article  CAS  Google Scholar 

  44. B. Gurkan, B.F. Goodrich, E.M. Mindrup, L.E. Ficke, M. Massel, S. Seo, T.P. Senftle, H. Wu, M.F. Glaser, J.K. Shah, E.J. Maginn, J.F. Brennecke, W.F. Schneider, J. Phys. Chem. Lett. 1, 3494 (2010)

    Article  CAS  Google Scholar 

  45. F.-F. Chen, K. Huang, Y. Zhou, Z.-Q. Tian, X. Zhu, D.-J. Tao, D.-e Jiang, S. Dai, Angew. Chem. Int. Ed. 55, 7166 (2016)

    Article  CAS  Google Scholar 

  46. N. O’Reilly, N. Giri, S.L. James, Chem. Eur. J. 13, 3020 (2007)

    Article  CAS  Google Scholar 

  47. K. Jie, N. Onishi, J.A. Schott, I. Popovs, D.-e Jiang, S. Mahurin, S. Dai, Angew. Chem. Int. Ed. 59, 2268 (2020)

    Article  CAS  Google Scholar 

  48. W. Shan, P.F. Fulvio, L. Kong, J.A. Schott, C.-L. Do-Thanh, T. Tian, X. Hu, S.M. Mahurin, H. Xing, S. Dai, ACS Appl. Mater. Interfaces 10, 32 (2018)

    Article  CAS  Google Scholar 

  49. Z. Tian, S.M. Mahurin, S. Dai, D.-e Jiang, Nano Lett. 17, 1802 (2017)

    Article  CAS  Google Scholar 

  50. W. Guo, S.M. Mahurin, S. Wang, H.M. Meyer, H. Luo, X. Hu, D.-e Jiang, S. Dai, J. Membr. Sci. 604, 118013 (2020)

    Article  CAS  Google Scholar 

  51. S. Wang, S.M. Mahurin, S. Dai, D.-e Jiang, ACS Appl. Mater. Interfaces 13, 17511 (2021)

    Article  CAS  Google Scholar 

  52. Z. Tian, S. Dai, D.-e Jiang, ACS Appl. Polym. 1, 95 (2019)

    Article  CAS  Google Scholar 

  53. L. Hao, P. Li, T. Yang, T.-S. Chung, J. Membr. Sci. 436, 221 (2013)

    Article  CAS  Google Scholar 

  54. M. Zeeshan, V. Nozari, M.B. Yagci, T. Isık, U. Unal, V. Ortalan, S. Keskin, A. Uzun, J. Am. Chem. Soc. 140, 10113 (2018)

    Article  CAS  Google Scholar 

  55. R. Futamura, T. Iiyama, Y. Takasaki, Y. Gogotsi, M.J. Biggs, M. Salanne, J. Ségalini, P. Simon, K. Kaneko, Nat. Mater. 16, 1225 (2017)

    Article  CAS  Google Scholar 

  56. X. Mao, P. Brown, C. Červinka, G. Hazell, H. Li, Y. Ren, D. Chen, R. Atkin, J. Eastoe, I. Grillo, A.A.H. Padua, M.F. Costa Gomes, T.A. Hatton, Nat. Mater. 18, 1350 (2019)

    Article  CAS  Google Scholar 

  57. Y. Liu, H.-Z. Ye, K.M. Diederichsen, T. Van Voorhis, T.A. Hatton, Nat. Commun. 11, 2278 (2020)

    Article  CAS  Google Scholar 

  58. M. Liu, L. Liang, X. Li, X. Gao, J. Sun, Green Chem. 18, 2851 (2016)

    Article  CAS  Google Scholar 

  59. Y. Qu, J. Lan, Y. Chen, J. Sun, Sustain. Energy Fuels 5, 2494 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Separations Science Program.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-en Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Yang, Z., Mahurin, S.M. et al. Ionic liquids for carbon capture. MRS Bulletin 47, 395–404 (2022). https://doi.org/10.1557/s43577-022-00315-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00315-4

Keywords

Navigation