Skip to main content
Log in

High pressure induced atomic and mesoscale phase behaviors of one-dimensional TiO2 anatase nanocrystals

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Here, we report the high pressure phase and morphology behavior of ordered anatase titanium dioxide (TiO2) nanocrystal arrays. One-dimensional TiO2 nanorods and nanorices were synthesized and self-assembled into ordered mesostructures. Their phase and morphological transitions at both atomic scale and mesoscale under pressure were studied using in situ synchrotron wide- and small-angle x-ray scattering (WAXS and SAXS) techniques. At the atomic scale, synchrotron WAXS reveals a pressure-induced irreversible amorphization up to 35 GPa in both samples but with different onset pressures. On the mesoscale, no clear phase transformations were observed up to 20 GPa by synchrotron SAXS. Intriguingly, sintering of TiO2 nanorods at mesoscale into nano-squares or nano-rectangles, as well as nanorices into nanowires, were observed for the first time by transmission electron microscopy. Such pressure-induced nanoparticle phase-amorphization and morphological changes provide valuable insights for design and engineering structurally stable nanomaterials.

Impact statement

The high pressure behavior of nanocrystals (NCs) continues to be of interest, as previous studies have demonstrated that an externally applied pressure can serve as an efficient tool to induce structural phase transitions of NC assemblies at both the atomic scale and mesoscale without altering any chemistry by manipulating NC interatomic and interparticle distances. In addition, the high pressure generated deviatoric stress has been proven to be able to force adjacent NCs to connect and fuse into new crystalline nanostructures. Although the atomic structural evolution of TiO2 NCs under pressure has been widely investigated in the past decades, open questions remain regarding the mesoscale phase transition and morphology of TiO2 NC assemblies as a function of pressure. Therefore, in this work, systemic high pressure experiments on ordered arrays of TiO2 nanorods and nanorices were conducted by employing wide/small angle x-ray scattering techniques. The sintering of TiO2 assemblies at mesoscale into various nanostructures under pressure were revealed by transmission electron microscopy. Overall, this high pressure work fills the current gap in research on the mesoscale phase behavior of TiO2 assemblies. The observed morphology tunability attained by applying pressure opens new pathways for engineering nanomaterials and optimizing their collective properties through mechanical compression stresses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Q. Li, B. Liu, Chin. Phys. B 25, 076107 (2016)

    Article  Google Scholar 

  2. F. Bai, K. Bian, X. Huang, Z. Wang, H. Fan, Chem. Rev. 119, 7673 (2019)

    Article  CAS  Google Scholar 

  3. K. Jacobs, A.P. Alivisatos, Rev. Mineral. Geochem. 44, 59 (2001)

    Article  CAS  Google Scholar 

  4. K. Lagarec, S. Desgreniers, Solid State Commun. 94, 519 (1995)

    Article  CAS  Google Scholar 

  5. G. Hearne, J. Zhao, A. Dawe, V. Pischedda, M. Maaza, M. Nieuwoudt, P. Kibasomba, O. Nemraoui, J. Comins, M. Witcomb, Phys. Rev. B 70, 134102 (2004)

    Article  Google Scholar 

  6. V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, P.F. McMillan, V.B. Prakapenka, G. Shen, B.C. Muddle, Phys. Rev. Lett. 96, 135702 (2006)

    Article  Google Scholar 

  7. S.-W. Park, J.-T. Jang, J. Cheon, H.-H. Lee, D.R. Lee, Y. Lee, J. Phys. Chem. C 112, 9627 (2008)

    Article  CAS  Google Scholar 

  8. Q. Li, B. Liu, L. Wang, D. Li, R. Liu, B. Zou, T. Cui, G. Zou, Y. Meng, H.-K. Mao, J. Phys. Chem. Lett. 1, 309 (2010)

    Article  CAS  Google Scholar 

  9. Q. Li, B. Cheng, X. Yang, R. Liu, B. Liu, J. Liu, Z. Chen, B. Zou, T. Cui, B. Liu, J. Phys. Chem. C 117, 8516 (2013)

    Article  CAS  Google Scholar 

  10. Z. Dong, Y. Song, Can. J. Chem. 93, 165 (2015)

    Article  CAS  Google Scholar 

  11. Q. Li, R. Liu, T. Wang, K. Xu, Q. Dong, B. Liu, J. Liu, B. Liu, AIP Adv. 5, 097128 (2015)

    Article  Google Scholar 

  12. Z. Dong, F. Xiao, A. Zhao, L. Liu, T.-K. Sham, Y. Song, RSC Adv. 6, 76142 (2016)

    Article  CAS  Google Scholar 

  13. Y. Huang, F. Chen, X. Li, Y. Yuan, H. Dong, S. Samanta, Z. Yu, S. Rahman, J. Zhang, K. Yang, J. Appl. Phys. 119, 215903 (2016)

    Article  Google Scholar 

  14. X. Lü, W. Yang, Z. Quan, T. Lin, L. Bai, L. Wang, F. Huang, Y. Zhao, J. Am. Chem. Soc. 136, 419 (2014)

    Article  Google Scholar 

  15. Q. Li, B. Cheng, B. Tian, R. Liu, B. Liu, F. Wang, Z. Chen, B. Zou, T. Cui, B. Liu, RSC Adv. 4, 12873 (2014)

    Article  CAS  Google Scholar 

  16. Y. Huang, W. Li, X. Ren, Z. Yu, S. Samanta, S. Yan, J. Zhang, L. Wang, Radiat. Phys. Chem. 120, 1 (2016)

    Article  CAS  Google Scholar 

  17. Q. Li, R. Liu, B. Cheng, L. Wang, M. Yao, D. Li, B. Zou, T. Cui, B. Liu, Mater. Res. Bull. 47, 1396 (2012)

    Article  CAS  Google Scholar 

  18. H. Wu, F. Bai, Z. Sun, R.E. Haddad, D.M. Boye, Z. Wang, H. Fan, Angew. Chem. Int. Ed. 122, 8609 (2010)

    Article  Google Scholar 

  19. L. Meng, S. Duwal, J.M.D. Lane, T. Ao, B. Stoltzfus, M. Knudson, C. Park, P. Chow, Y. Xiao, H. Fan, J. Am. Chem. Soc. 143, 2688 (2021)

    Article  CAS  Google Scholar 

  20. H. Liu, X. Yang, K. Wang, Y. Wang, M. Wu, X. Zuo, W. Yang, B. Zou, ACS Appl. Nano Mater. 3, 2438 (2020)

    Article  CAS  Google Scholar 

  21. G.M. Biesold, S. Liang, B. Brettmann, N. Thadhani, Z. Kang, Z. Lin, Angew. Chem. Int. Ed. 60, 9772 (2021)

    Article  CAS  Google Scholar 

  22. Z. Wang, C. Schliehe, T. Wang, Y. Nagaoka, Y.C. Cao, W.A. Bassett, H. Wu, H. Fan, H. Weller, J. Am. Chem. Soc. 133, 14484 (2011)

    Article  CAS  Google Scholar 

  23. Y. Nagaoka, K. Hills-Kimball, R. Tan, R. Li, Z. Wang, O. Chen, Adv. Mater. 29, 1606666 (2017)

    Article  Google Scholar 

  24. J.-W. Seo, Y.-W. Jun, S.J. Ko, J. Cheon, J. Phys. Chem. B 109, 5389 (2005)

    Article  CAS  Google Scholar 

  25. T.R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R.T. Weber, P. Fornasiero, C.B. Murray, J. Am. Chem. Soc. 134, 6751 (2012)

    Article  CAS  Google Scholar 

  26. J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson Jr., J.V. Smith, J. Am. Chem. Soc. 109, 3639 (1987)

    Article  CAS  Google Scholar 

  27. M. Calatayud, P. Mori-Sánchez, A. Beltrán, A.M. Pendás, E. Francisco, J. Andrés, J. Recio, Phys. Rev. B 64, 184113 (2001)

    Article  Google Scholar 

  28. T. Arlt, M. Bermejo, M. Blanco, L. Gerward, J. Jiang, J.S. Olsen, J. Recio, Phys. Rev. B 61, 14414 (2000)

    Article  CAS  Google Scholar 

  29. V. Pischedda, G. Hearne, A. Dawe, J. Lowther, Phys. Rev. Lett. 96, 035509 (2006)

    Article  CAS  Google Scholar 

  30. Q. Guo, Y. Zhao, W.L. Mao, Z. Wang, Y. Xiong, Y. Xia, Nano Lett. 8, 972 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (DMR-1453083 and CHE-2101535) and by Sandia’s Laboratory Directed Research & Development (LDRD) program. This article describes objective technical results and analysis. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA’s Office of Experimental Sciences. The Advanced Photon Source is a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US DOE or the US Government. Research was carried out, in part, at the Center for Integrated Nanotechnology (CINT), a US Department of Energy, Office of Basic Energy Sciences user facility. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyou Fan or Yang Qin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6051 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Duwal, S., Lane, J.M.D. et al. High pressure induced atomic and mesoscale phase behaviors of one-dimensional TiO2 anatase nanocrystals. MRS Bulletin 47, 455–460 (2022). https://doi.org/10.1557/s43577-021-00250-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00250-w

Keywords

Navigation