Skip to main content
Log in

Effect of Heat Treatment Solution on the Size and Distribution of Gamma Prime (γ′) of Super-alloy INCONEL 738

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nickel base superalloys, which are gamma prime γ′(Ni3Al, Ti) precipitation strengthened, is largely responsible for the elevated-temperature strength of the material and the higher resistance to creep deformation. The amount of γ′ depends on the chemical composition and temperature, heat treatment, these alloy are widely used in hot sections of aero-engines, land based turbines, stator parts, nozzle guide vanes, blades and integral wheels, due to its excellent elevated temperature strength and hot corrosion resistance. The γ′ size decreases not only by the high temperature of heat treatment solution (1120 °C), the cooling environment and cooling rate are important parameter to decrease γ′ size to 0.65 μm. This paper presents the effect of heat treatment solution in base nickel IN 738 superalloy under service conditions, on the size and morphology of the gamma phase γ′ Ni3 (AI, Ti), main phase in the nickel base superalloys. Also shown coarse carbide and precipitates gamma prime size distributed and improve interdentritic spacing in the matrix after heat treatment solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Ojo, R.K. Shidu and M.C. Chaturvedi, Microstructural Analysis of Laser-Beam-Welded, Directionally Solidified INCONEL 738,The minerals, metals & materials society and ASM international (2007).

    Google Scholar 

  2. P. N. Quested and S. Osgerby, Mater Sci. Technology, 2, 461–75 (1986).

    Article  CAS  Google Scholar 

  3. R. B. Scarlin: Metall. Trans.7A 4, 1535–1541 (1976).

    Article  Google Scholar 

  4. E.W. Ross and K.S. O’Hara., S.D. Antolovich, R.W. Stusurd, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom, Minerals, Metals & Materials Society (TMS), Warrendale, 257–65 (1992).

    Google Scholar 

  5. D.N. Duhl, In Superalloys 2, C.T. Sims, N.S. Stoloff, W.C. Hagel, Wiley-Interscience, NY, (1987), pp. 189–214.

    Google Scholar 

  6. M. Prager, C.S. Shira. Welding Research Council Bulletin No. 128 (1968).

    Google Scholar 

  7. O. A. Ojo, R.G. Ding, and M.C. Chaturvedi, Scripta Materialia, 54,2131–2136, (2006).

    Article  CAS  Google Scholar 

  8. B. Jahnke: Weld Journal Science, 11(61), 343s–347s (1982).

    Google Scholar 

  9. C.Y. Su, C.P. Chou, B.C. Wu, and W.C. Lih: J. Mater. Eng. Performance, 6(5), 619–627 (1997).

    Article  CAS  Google Scholar 

  10. K. Banerjee, N.L. Richards, and M.C. Chaturvedi, Metall. Mater. Trans. vol. 3, 6A, 1881–1890 (2005).

    Article  Google Scholar 

  11. R.K. Sidhu, N.L. Richards, and M.C. Chaturvedi, Mater. Sci. Technol. 21,1119–1131 (2005).

    Article  CAS  Google Scholar 

  12. R. F. Decker, Strengthening mechanisms in nickel base superalloy. America Research laboratory the international Nickel Company. Presented at steel Strengthening mechanisms symposium, Zurich Switzerland 5-6 May (1969).

    Google Scholar 

  13. H. Gleiter, Z. Metallk, Interaction of the dislocation Particles, physical status Solidus 58, 306 (1965).

    Google Scholar 

  14. L. K Shingal and J.W. Martin, ActaMaterialia, 16, 947 (1968).

    Google Scholar 

  15. M. Doi, T. Miyazaki. A new parameter for describing the structure bifurcation in two-phase alloys containing coherent particles. J. Materials Science, 27, 6291–6298 (1992).

    CAS  Google Scholar 

  16. M. Doi, Elasticity effects on the microstructure of alloys containing coherent Precipitates, Prog Material Science, 40–79, (1996).

    Google Scholar 

  17. H. K. D. H. Bhadeshia, Nickel Based Superalloys Vol.1, (2009) pp. 1–12.

    Google Scholar 

  18. W. Betteridge, Edward Arnold. The Nimonic Alloys, London (1959).

    Google Scholar 

  19. R.W. Guard and J.H. Westbroook, Trans. Met, 215, 807 (1959).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzmán, I., Garza, A., Garcia, F. et al. Effect of Heat Treatment Solution on the Size and Distribution of Gamma Prime (γ′) of Super-alloy INCONEL 738. MRS Online Proceedings Library 1372, 81–88 (2011). https://doi.org/10.1557/opl.2012.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.110

Keywords

Navigation